Parallelized Incomplete Poisson Preconditioner in Cloth Simulation

  • Costas Sideris
  • Mubbasir Kapadia
  • Petros Faloutsos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7060)

Abstract

Efficient cloth simulation is an important problem for interactive applications that involve virtual humans, such as computer games. A common aspect of many methods that have been developed to simulate cloth is a linear system of equations, which is commonly solved using conjugate gradient or multi-grid approaches. In this paper, we introduce to the computer gaming community a recently proposed preconditioner, the incomplete Poisson preconditioner (IPP ), for conjugate gradient solvers. We show that IPP performs as well as the current state-of-the-art preconditioners, while being much more amenable to standard thread-level parallelism. We demonstrate our results on an 8-core Mac Pro and a 32-core Emerald Rigde system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ament, M., Knittel, G., Weiskopf, D., Strasser, W.: A parallel preconditioned conjugate gradient solver for the poisson problem on a multi-gpu platform. In: Proceedings of the 2010 18th Euromicro Conference on Parallel, Distributed and Network-based Processing, PDP 2010, pp. 583–592. IEEE Computer Society (2010)Google Scholar
  2. 2.
    Ascher, U., Boxerman, E.: On the modified conjugate gradient method in cloth simulation. The Visual Computer 19, 526–531 (2003)CrossRefGoogle Scholar
  3. 3.
    Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Proceedings of ACM SIGGRAPH, pp. 43–54 (1998)Google Scholar
  4. 4.
    Boxerman, E.: Speeding up cloth simulation. Ph.D. thesis, The University of British Columbian, BC, Canada (2003)Google Scholar
  5. 5.
    Breen, D.E., House, D.H., Wozny, M.J., Breen, D.E.: Predicting the drape of woven cloth using interacting particles (1994)Google Scholar
  6. 6.
    Bridson, R., Fedkiw, R., Anderson, J.: Robust treatment of collisions, contact and friction for cloth animation. In: ACM SIGGRAPH 2005 Courses, SIGGRAPH 2005. ACM, New York (2005)Google Scholar
  7. 7.
    Carignan, M., Yang, Y., Thalrnann, N.M., Thalrnanrp, D.: Dressing animated synthetic actors with complex deformable clothes. In: Computer Graphics (Proc. SIGGRAPH), pp. 99–104 (1992)Google Scholar
  8. 8.
    Choi, K., Ko, H.: Research problems in clothing simulation. Computer-Aided Design 37(6), 585–592 (2005)CrossRefGoogle Scholar
  9. 9.
    Choi, K.J., Ko, H.S.: Stable but responsive cloth. In: Proceedings of ACM SIGGRAPH, pp. 604–611 (2002)Google Scholar
  10. 10.
    Eberhardt, B., Weber, A., Strasser, W.: A fast, flexible, particle-system model for cloth draping. IEEE Comput. Graph. Appl. 16, 52–59 (1996)CrossRefGoogle Scholar
  11. 11.
    Fuhrmann, A., Sobottka, G., Grob, C.: Distance fields for rapid collision detection in physically based modeling. In: GRAPHICON (2003)Google Scholar
  12. 12.
    Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., Grinspun, E.: Efficient Simulation of Inextensible Cloth. SIGGRAPH (ACM Transactions on Graphics) 26(3) (2007)Google Scholar
  13. 13.
    Hauth, M., Etzmuss, O., Strasser, W.: Analysis of numerical methods for the simulation of deformable models. The Visual Computer 19, 581–600 (2003)CrossRefGoogle Scholar
  14. 14.
    Müller, M.: Hierarchical position based dynamics. In: Proceedings of Virtual Reality Interactions and Physical Simulations (VRIPhys 2008), pp. 13–14 (2008)Google Scholar
  15. 15.
    Müller, M., Heidelberger, B., Hennix, M., Ratcliff, J.: Position based dynamics. J. Vis. Comun. Image Represent. 18, 109–118 (2007)CrossRefGoogle Scholar
  16. 16.
    Nealen, A., Müller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically based deformable models in computer graphics. Computer Graphics Forum 25, 809–836 (2006)CrossRefGoogle Scholar
  17. 17.
    Okabe, H., Imaoka, H., Tomiha, T., Niwaya, H.: Three dimensional apparel cad system. In: Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1992, pp. 105–110. ACM, New York (1992)CrossRefGoogle Scholar
  18. 18.
    Selle, A., Su, J., Irving, G., Fedkiw, R.: Robust high-resolution cloth using parallelism, history-based collisions, and accurate friction. IEEE Transactions on Visualization and Computer Graphics 15, 339–350 (2009)CrossRefGoogle Scholar
  19. 19.
    Shewchuk, J.R.: An introduction to the conjugate gradient method without the agonizing pain. Tech. rep. (1994)Google Scholar
  20. 20.
    Terzopoulos, D., Fleischer, K.: Deformable models. The Visual Computer 4(6), 306–331 (1988)CrossRefGoogle Scholar
  21. 21.
    Terzopoulos, D., Fleischer, K.: Modeling inelastic deformation: Viscoelasticity, plasticity, fracture. Computer Graphics (Proc. SIGGRAPH 1988) 22(4), 269–278 (1988)CrossRefGoogle Scholar
  22. 22.
    Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. Computer Graphics (Proc. SIGGRAPH 1987) 21(4), 205–214 (1987)CrossRefGoogle Scholar
  23. 23.
    Volino, P., Courchesne, M., Magnenat Thalmann, N.: Versatile and efficient techniques for simulating cloth and other deformable objects. In: Proceedings of ACM SIGGRAPH, pp. 137–144 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Costas Sideris
    • 1
  • Mubbasir Kapadia
    • 1
    • 2
  • Petros Faloutsos
    • 1
    • 3
  1. 1.University of California Los AngelesUSA
  2. 2.University of PennsylvaniaUSA
  3. 3.York UniversityUSA

Personalised recommendations