Automatic Generation of Suboptimal NavMeshes

  • Ramon Oliva
  • Nuria Pelechano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7060)


Most current games perform navigation in virtual environments through A* for path finding combined with a local movement algorithm. Navigation Meshes are the most popular approach to combine path finding with local movement. This paper presents a new Automatic Navigation Mesh Generator (ANavMG) that subdivides any polygon representing the environment, with or without holes, into a suboptimal number of convex cells where local movement algorithms can be applied without deadlocks. We introduce the concept of convex relaxation to further reduce the number of cells depending on the flexibility of the local movement algorithm. Finally we show results of the ANavMG and its application to a multi player game.


Navigation meshes Convex decomposition Crowd navigation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: ICRA 2008: Proceedings of the International Conference on Robotics and Automation, pp. 1928–1935 (2008)Google Scholar
  2. 2.
    Bullet Physics Library,
  3. 3.
    Haumont, D., Debeir, O., Sillion, F.: Volumetric cell-and-portal generation. Computer Graphics Forum 22(3), 303–312 (2003)CrossRefGoogle Scholar
  4. 4.
    Fernandez, J., Toth, B., Canovas, L., Pelegrin, B.: A practical algorithm for decomposing polygonal domains into convex polygons by diagonals. TOP 16, 367–387 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hertel, S., Mehlhorn, K.: Fast Triangulation of Simple Polygons. In: Karpinski, M. (ed.) FCT 1983. LNCS, vol. 158, pp. 207–218. Springer, Heidelberg (1983)CrossRefGoogle Scholar
  6. 6.
    Kallmann, M.: Navigation Queries from Triangular Meshes. In: Boulic, R., Chrysanthou, Y., Komura, T. (eds.) MIG 2010. LNCS, vol. 6459, pp. 230–241. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Lamarche, F.: TopoPlan: a topological path planner for real time human navigation under floor and ceiling constraints. Computer Graphics Forum 28(2), 649–658 (2009)CrossRefGoogle Scholar
  8. 8.
    Lerner, A., Chrysanthou, Y., Cohen-Or, D.: Efficient Cells-and-portals Partitioning. Computer Animation and Virtual Worlds 17(1), 21–40 (2006)CrossRefGoogle Scholar
  9. 9.
    Lien, J.-M., Amato, N.M.: Approximate convex decomposition of polygons. In: ACM Symposium on Computational Geometry, vol. 35(1-2), pp. 100–123 (2006)Google Scholar
  10. 10.
    Mekni, M.: Hierarchical path planning for situated agents in informed virtual geographic environments. In: Proc. of the 3rd International ICST Conference on Simulation Tools and Techniques, pp. 1–10 (2010)Google Scholar
  11. 11.
    Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling individual agents in high-density crowd simulation. In: Proc. of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 99–108 (2007)Google Scholar
  12. 12.
  13. 13.
    Reynolds, C.W.: Steering Behaviors For Autonomous Characters. In: Game Developers Conference, San Jose, pp. 763–782 (1999)Google Scholar
  14. 14.
    Snook, G.: Simplified 3D Movement and Pathfinding Using Navigation Meshes, Game Programming Gems, Ed. Mark DeLoura, Charles River Media (2000)Google Scholar
  15. 15.
    Sud, A., Andersen, E., Curtis, S., Lin, M.C., Manocha, D.: Real-time path planning in dynamic virtual environments using multiagent navigation graphs. IEEE Transactions on Visualization and Computer Graphics 14, 526–538 (2008)CrossRefGoogle Scholar
  16. 16.
    Unreal Engine’s NavMesh Generation Method,
  17. 17.
    Valve’s NavMesh Generation Method,

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ramon Oliva
    • 1
  • Nuria Pelechano
    • 1
  1. 1.Universitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations