A New Method for Olive Fruits Recognition

  • C. Gabriel Gatica
  • S. Stanley Best
  • José Ceroni
  • Gaston Lefranc
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7042)

Abstract

A model for the recognition of the diameter of olives is presented. The information regarding size of olive fruits is intended for estimating the best harvesting time of olive trees. The recognition is performed by analyzing the RGB images obtained from olive tree pictures

Keywords

image processing pattern recognition RGB model CIELAB color space olive harvesting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Martinez-Uso, A., Pla, F., Garcia-Sevilla, P.: A Novel Energy Minimization Criterion for Color Image Segmentation. In: 17th Int. Conference on Pattern Recognition (ICPR 2004), vol. 3, pp. 206–209 (2004)Google Scholar
  2. 2.
    Unay, D., Gosselin, B.: Artificial Neural Network-Based Segmentation And Apple Grading By Machine Vision. In: IEEE Int. Conference on Image Processing (ICIP 2005), vol. II-630-3 (2005)Google Scholar
  3. 3.
    Mohamad, F.S., Manaf, A.A., Chuprat, S.: Histogram Matching For Color Detection A Preliminary Study. In: Int. Symposium in Information Technology (ITSim), Kuala Lumpur, pp. 1679–1684 (2010)Google Scholar
  4. 4.
    Cornelius, H., Kragic, D., Eklundh, J.: Object and Pose Recognition Using Contour and Shape Information. In: Proc. 12th Int. Conference on Advanced Robotics (ICAR 2005), Seatle, WA, pp. 613–620 (2005)Google Scholar
  5. 5.
    Jin-jing, W., De-an, Z., Wei, J., Jun-jun, T., Ying, Z.: Application of Support Vector Machine to Apple Recognition using in Apple Harvesting Robot. In: IEEE Int. Conference on Information and Automation (ICIA 2009), Zuhuhai, Macau, pp. 1110–1115 (2009)Google Scholar
  6. 6.
    Zhao, J., Tow, J., Katupitiya, J.: On-tree Fruit Recognition Using Texture Properties and Color Data. In: IEEE/RSJ Int. Conference on Intelligent Robots and Systems (IROS 2005), pp. 263–268 (2005)Google Scholar
  7. 7.
    Jamil, N., Mohamed, A., Abdullah, S.: Automated Grading of Palm Oil Fresh Fruit Bunches (FFB) using Neuro-Fuzzy Technique. In: Int. Conference of Soft Computing and Pattern Recognition (SOCPAR 2009), Malaca, pp. 245–249 (2009)Google Scholar
  8. 8.
    Wijethunga, P., Samarasinghe, S., Kulasiri, D., Woodhead, I.: Digital Image Analysis Based Automated Kiwifruit Counting Technique. In: 23rd Int. Conference Image and Vision Computing New Zealand (IVCNZ 2008), Christchurch, pp. 1–6 (2008)Google Scholar
  9. 9.
    Song, W.-g., Guo, H.-x., Wang, Y.: A Method of Fruits Recognition Based on SIFT Characteristics Matching. In: Int. Conference on Artificial Intelligence and Computational Intelligence (AICI 2009), Shanghai, pp. 119–122 (2009)Google Scholar
  10. 10.
    Yinqing, L., Xiaodong, Z., Xiaojie, W.: Fruit Discrimination on Region Feature. In: Fifth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2008), Shandong, pp. 590–594 (2008)Google Scholar
  11. 11.
    Saito, Y., Hatanaka, T., Uosaki, K., Shigeto, K.: Eggplant Classification Using Artificial Neural Network. In: Proc. of the International Joint Conference on Neural Networks, vol. 2, pp. 1013–1018 (2003)Google Scholar
  12. 12.
    Gatica, G.: A novel method for detection and counting of flower initiation in pear trees by hyperspectral and digital image analysis. Report at KU Leuven, Bio-systems department, Belgium (2010)Google Scholar
  13. 13.
    Chan, T., Vese, L.: Active Contours Without Edges. IEEE Transactions on Image Processing 10(2) (2001)Google Scholar
  14. 14.
    Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42(5), 577–685 (1989)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Chan, T., Esedoglu, S.: A Multiscale Algorithm for Mumford-Shah Image Segmentation, Mathematics Department, UCLA (December 17, 2003)Google Scholar
  16. 16.
    Mery, M., Lefranc, G.: Computer Vision for Fruits Classification by Color and Size (in spanish). In: XVIII Congreso de la Asociación Chilena de Control Automático, Chile (December 2008)Google Scholar
  17. 17.
    Seng, W.C., Mirisaee, S.H.: A New Method for Fruits Recognition System. In: International Conference on Electrical Engineering and Informatics (ICEEI 2009), Selangor, vol. 1, pp. 130–134 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • C. Gabriel Gatica
    • 1
    • 2
  • S. Stanley Best
    • 2
  • José Ceroni
    • 3
  • Gaston Lefranc
    • 1
  1. 1.Escuela de Ingeniería EléctricaPontificia Universidad Católica de ValparaísoChile
  2. 2.Instituto de Investigaciones AgropecuariasINIA, PROGAP, ChillánChile
  3. 3.Escuela de Ingeniería IndustrialPontificia Universidad Católica de ValparaísoChile

Personalised recommendations