Semi-supervised Classification by Probabilistic Relaxation

  • Adolfo Martínez-Usó
  • Filiberto Pla
  • José Martínez Sotoca
  • Henry Anaya-Sánchez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7042)


In this paper, a semi-supervised approach based on probabilistic relaxation theory is presented. It combines two desirable properties; firstly, a very small number of labelled samples is needed and, secondly, the assignment of labels is consistently performed according to our contextual information constraints. The proposed technique has been successfully applied to pattern recognition problems, obtaining promising preliminary results in database classification and image segmentation. Our methodology has also been evaluated against a recent state-of-the-art algorithm for semi-supervised learning, obtaining generally comparable or better results.


Semi-supervised Probabilistic Relaxation Classification 


  1. 1.
    Chapelle, O., Scholkopf, B., Zien, A. (eds.): Semi-supervised Learning. MIT Press (2006)Google Scholar
  2. 2.
    Christmas, W.J.: Structural matching in computer vision using probabilistic reasoning. PhD thesis, CVSSP, University of Surrey (1995)Google Scholar
  3. 3.
    Christmas, W.J., Kittler, J., Petrou, M.: Structural matching in computer vision using probabilistic relaxation. IEEE Trans. on PAMI 17(8), 749–764 (1995)CrossRefGoogle Scholar
  4. 4.
    Diplaros, A., Vlassis, N., Gevers, T.: A spatially constrained generative model and an em algorithm for image segmentation. IEEE Trans. on Neural Networks 18(3), 798–808 (2007)CrossRefGoogle Scholar
  5. 5.
    Faber, P.: A theoretical framework for relaxation processes in pattern recognition: Application to robust nonparametric contour generalization. IEEE Trans. on PAMI 25(8), 1021–1027 (2003)CrossRefGoogle Scholar
  6. 6.
    Gersho, A., Gray, R.M.: Vector quantization and signal compression. Kluwer Academic Publishers, Norwell (1992)CrossRefzbMATHGoogle Scholar
  7. 7.
    Haralick, R.M.: Decision making in context. IEEE Trans. on PAMI 5(4), 417–428 (1983)CrossRefzbMATHGoogle Scholar
  8. 8.
    Liu, Q., Liao, X., Li, H., Stack, J.R., Carin, L.: Semisupervised multitask learning. IEEE Trans. on PAMI 31(6), 1074–1086 (2009)CrossRefGoogle Scholar
  9. 9.
    Martinez-Uso, A., Pla, F., Sotoca, J.M.: A semi-supervised gaussian mixture model for image segmentation. In: ICPR, pp. 2941–2944 (2010)Google Scholar
  10. 10.
    Shi, T., Belkin, M., Yu, B.: Data spectroscopy: Learning mixture models using eigenspaces of convolution operators. In: ICML 2008, pp. 936–943 (2008)Google Scholar
  11. 11.
    Wang, H., Hancock, E.R.: Probabilistic relaxation using the heat equation. In: ICPR, vol. 2, pp. 666–669 (2006)Google Scholar
  12. 12.
    Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global consistency. In: Advances in Neural Information Processing Systems, vol. 16, pp. 321–328. MIT Press (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Adolfo Martínez-Usó
    • 1
  • Filiberto Pla
    • 1
  • José Martínez Sotoca
    • 1
  • Henry Anaya-Sánchez
    • 1
  1. 1.Dept. of Computer Languages and SystemsInstitute of New Imaging TechnologiesCastellónSpain

Personalised recommendations