Advertisement

An Empirical Study of Vocabulary Relatedness and Its Application to Recommender Systems

  • Gong Cheng
  • Saisai Gong
  • Yuzhong Qu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7031)

Abstract

When thousands of vocabularies having been published on the Semantic Web by various authorities, a question arises as to how they are related to each other. Existing work has mainly analyzed their similarity. In this paper, we inspect the more general notion of relatedness, and characterize it from four angles: well-defined semantic relatedness, lexical similarity in contents, closeness in expressivity and distributional relatedness. We present an empirical study of these measures on a large, real data set containing 2,996 vocabularies, and 15 million RDF documents that use them. Then, we propose to apply vocabulary relatedness to the problem of post-selection vocabulary recommendation. We implement such a recommender service as part of a vocabulary search engine, and test its effectiveness against a handcrafted gold standard.

Keywords

Ontology recommendation relatedness vocabulary 

References

  1. 1.
    Adomavicius, G., Tuzhilin, A.: Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)CrossRefGoogle Scholar
  2. 2.
    Alani, H., Brewster, C.: Ontology Ranking Based on the Analysis of Concept Structures. In: 3rd International Conference on Knowledge Capture, pp. 51–58. ACM, New York (2005)Google Scholar
  3. 3.
    Budanitsky, A., Hirst, G.: Evaluating WordNet-based Measures of Lexical Semantic Relatedness. Comput. Linguist. 32(1), 13–47 (2006)CrossRefMATHGoogle Scholar
  4. 4.
    Cheng, G., Qu, Y.: Term Dependence on the Semantic Web. In: Sheth, A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 665–680. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    David, J., Euzenat, J.: Comparison Between Ontology Distances (Preliminary Results). In: Sheth, A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 245–260. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    David, J., Euzenat, J., Šváb-Zamazal, O.: Ontology Similarity in the Alignment Space. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 129–144. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Ding, L., Pan, R., Finin, T., Joshi, A., Peng, Y., Kolari, P.: Finding and Ranking Knowledge on the Semantic Web. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 156–170. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Ding, L., Finin, T.: Characterizing the Semantic Web on the Web. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 242–257. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)MATHGoogle Scholar
  10. 10.
    Ghazvinian, A., Noy, N.F., Jonquet, C., Shah, N., Musen, M.A.: What Four Million Mappings Can Tell You about Two Hundred Ontologies. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 229–242. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Hawalah, A., Fasli, M.: A Graph-based Approach to Measuring Semantic Relatedness in Ontologies. In: International Conference on Web Intelligence, Mining and Semantics, pp. 29:1–29:12. ACM, New York (2011)Google Scholar
  12. 12.
    Hu, W., Chen, J., Zhang, H., Qu, Y.: How Matchable Are Four Thousand Ontologies on the Semantic Web. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 290–304. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Jonquet, C., Musen, M.A., Shah, N.H.: Building a Biomedical Ontology Recommender Web Service. J. Biomed. Semant. 1(suppl.1), S1 (2010)Google Scholar
  14. 14.
    Lee, H.-T., Leonard, D., Wang, X., Loguinov, D.: IRLbot: Scaling to 6 Billion Pages and Beyond. In: 17th International Conference on World Wide Web, pp. 427–436. ACM, New York (2008)Google Scholar
  15. 15.
    Lewen, H., d’Aquin, M.: Extending Open Rating Systems for Ontology Ranking and Reuse. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS(LNAI), vol. 6317, pp. 441–450. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Lv, Y., Moon, T., Kolari, P., Zheng, Z., Wang, X., Chang, Y.: Learning to Model Relatedness for News Recommendation. In: 20th International Conference on World Wide Web, pp. 57–66. ACM, New York (2011)Google Scholar
  17. 17.
    Maedche, A., Staab, S.: Measuring Similarity between Ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 251–263. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Martínez Romero, M., Vázquez -Naya, J.M., Munteanu, C.R., Pereira, J., Pazos, A.: An Approach for the Automatic Recommendation of Ontologies Using Collaborative Knowledge. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds.) KES 2010. LNCS, vol. 6277, pp. 74–81. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Mazuel, L., Sabouret, N.: Semantic Relatedness Measure Using Object Properties in an Ontology. In: Sheth, A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 681–694. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Mohammad, S., Hirst, G.: Distributional Measures of Concept-distance: A Task-oriented Evaluation. In: 2006 Conference on Empirical Methods in Natural Language Processing, pp. 35–43. ACL, Sydney (2006)CrossRefGoogle Scholar
  21. 21.
    Nikolov, A., Motta, E.: Capturing Emerging Relations between Schema Ontologies on the Web of Data. In: 1st International Workshop on Consuming Linked Data. CEUR Workshop Proceedings (2010)Google Scholar
  22. 22.
    Noy, N.F., Guha, R., Musen, M.A.: User Ratings of Ontologies: Who Will Rate the Raters? In: 2005 AAAI Spring Symposium, pp. 56–63. The AAAI Press, Menlo Park (2005)Google Scholar
  23. 23.
    Pirró, G., Euzenat, J.: A Feature and Information Theoretic Framework for Semantic Similarity and Relatedness. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 615–630. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Stoilos, G., Stamou, G., Kollias, S.: A String Metric for Ontology Alignment. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 624–637. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Tempich, C., Volz, R.: Towards a Benchmark for Semantic Web Reasoners-An Analysis of the DAML Ontology Library. In: 2nd International Workshop on Evaluation of Ontology-based Tools. CEUR Workshop Proceedings (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gong Cheng
    • 1
  • Saisai Gong
    • 1
  • Yuzhong Qu
    • 1
  1. 1.State Key Laboratory for Novel Software TechnologyNanjing UniversityNanjingChina

Personalised recommendations