Advertisement

Connecting the Dots: A Multi-pivot Approach to Data Exploration

  • Igor O. Popov
  • M. C. Schraefel
  • Wendy Hall
  • Nigel Shadbolt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7031)

Abstract

The purpose of data browsers is to help users identify and query data effectively without being overwhelmed by large complex graphs of data. A proposed solution to identify and query data in graph-based datasets is Pivoting (or set-oriented browsing), a many-to-many graph browsing technique that allows users to navigate the graph by starting from a set of instances followed by navigation through common links. Relying solely on navigation, however, makes it difficult for users to find paths or even see if the element of interest is in the graph when the points of interest may be many vertices apart. Further challenges include finding paths which require combinations of forward and backward links in order to make the necessary connections which further adds to the complexity of pivoting. In order to mitigate the effects of these problems and enhance the strengths of pivoting we present a multi-pivot approach which we embodied in tool called Visor. Visor allows users to explore from multiple points in the graph, helping users connect key points of interest in the graph on the conceptual level, visually occluding the remainder parts of the graph, thus helping create a road-map for navigation. We carried out an user study to demonstrate the viability of our approach.

Keywords

Data browsing graph-data pivoting interaction 

References

  1. 1.
    Araujo, S., Houben, G.-J., Schwabe, D., Hidders, J.: Fusion – Visually Exploring and Eliciting Relationships in Linked Data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 1–15. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Araujo, S., Schwabe, D., Barbosa, S.: Experimenting with explorator: a direct manipulation generic rdf browser and querying tool. In: VISSW 2009 (February 2009)Google Scholar
  3. 3.
    Berners-lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach, J., Lerer, A., Sheets, D.: Tabulator: Exploring and analyzing linked data on the semantic web. In: Procedings of the 3rd International Semantic Web User Interaction Workshop (SWUI 2006), p. 06 (2006)Google Scholar
  4. 4.
    Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: Dbpedia - a crystallization point for the web of data. Web Semantics: Science, Services and Agents on the World Wide Web 7(3), 154–165 (2009); The Web of DataCrossRefGoogle Scholar
  5. 5.
    Bostock, M., Heer, J.: Protovis: A graphical toolkit for visualization. IEEE Transactions on Visualization and Computer Graphics 15(6), 1121–1128 (2009)CrossRefGoogle Scholar
  6. 6.
    Dix, A., Finlay, J., Abowd, G.D., Beale, R.: Human Computer Interaction, 3rd edn. Pearson, Harlow (2003)zbMATHGoogle Scholar
  7. 7.
    Harth, A.: VisiNav: Visual Web Data Search and Navigation. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2009. LNCS, vol. 5690, pp. 214–228. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Heim, P., Ertl, T., Ziegler, J.: Facet Graphs: Complex Semantic Querying Made Easy. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS, vol. 6088, pp. 288–302. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Heim, P., Hellmann, S., Lehmann, J., Lohmann, S., Stegemann, T.: RelFinder: Revealing Relationships in RDF Knowledge Bases. In: Chua, T.-S., Kompatsiaris, Y., Mérialdo, B., Haas, W., Thallinger, G., Bailer, W. (eds.) SAMT 2009. LNCS, vol. 5887, pp. 182–187. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Huynh, D.F., Karger, D.R.: Parallax and companion: Set-based browsing for the data web. In: WWW Conference. ACM (2009)Google Scholar
  11. 11.
    Huynh, D.F., Karger, D.R., Miller, R.C.: Exhibit: lightweight structured data publishing. In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, pp. 737–746. ACM, New York (2007)Google Scholar
  12. 12.
    Kobilarov, G., Dickinson, I.: Humboldt: Exploring linked data (2008)Google Scholar
  13. 13.
    Schraefel, m.c., Karger, D.: The pathetic fallacy of rdf. In: International Workshop on the Semantic Web and User Interaction, SWUI 2006 (2006)Google Scholar
  14. 14.
    Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of IEEE Symposium on Visual Languages, pp. 336–343 (September 1996)Google Scholar
  15. 15.
    Viegas, F.B., Wattenberg, M., van Ham, F., Kriss, J., McKeon, M.: Manyeyes: a site for visualization at internet scale. IEEE Transactions on Visualization and Computer Graphics 13, 1121–1128 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Igor O. Popov
    • 1
  • M. C. Schraefel
    • 1
  • Wendy Hall
    • 1
  • Nigel Shadbolt
    • 1
  1. 1.School of Electronics and Computer ScienceUniversity of SouthamptonSouthamptonUK

Personalised recommendations