Generating Resource Profiles by Exploiting the Context of Social Annotations

  • Ricardo Kawase
  • George Papadakis
  • Fabian Abel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7031)


Typical tagging systems merely capture that part of the tagging interactions that enrich the semantics of tag assignments according to the system’s purposes. The common practice is to build tag-based resource or user profiles on the basis of statistics about tags, disregarding the additional evidence that pertain to the resource, the user or the tag assignment itself. Thus, the main bulk of this valuable information is ignored when generating user or resource profiles.

In this work, we formalize the notion of tag-based and context-based resource profiles and introduce a generic strategy for building such profiles by incorporating available context information from all parts involved in a tag assignment. Our method takes into account not only the contextual information attached to the tag, the user and the resource, but also the metadata attached to the tag assignment itself. We demonstrate and evaluate our approach on two different social tagging systems and analyze the impact of several context-based resource modeling strategies within the scope of tag recommendations. The outcomes of our study suggest a significant improvement over other methods typically employed for this task.


Contextual Information Generate Resource Generic Context Model Baseline Strategy Social Annotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abel, F., Henze, N., Kawase, R., Krause, D.: The Impact of Multifaceted Tagging on Learning Tag Relations and Search. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS, vol. 6089, pp. 90–105. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Abel, F., Henze, N., Krause, D.: Exploiting additional Context for Graph-based Tag Recommendations in Folksonomy Systems. In: WI 2008, pp. 148–154. IEEE (2008)Google Scholar
  3. 3.
    Ames, M., Naaman, M.: Why we tag: motivations for annotation in mobile and online media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI 2007), pp. 971–980. ACM, New York (2007)CrossRefGoogle Scholar
  4. 4.
    Bischoff, K., Firan, C., Paiu, R., Nejdl, W.: Can All Tags Be Used for Search? In: Proc. of Conf. on Information and Knowledge Management 2008, ACM (2008)Google Scholar
  5. 5.
    Cai, Y., Li, Q.: Personalized search by tag-based user profile and resource profile in collaborative tagging systems. In: CIKM, pp. 969–978 (2010)Google Scholar
  6. 6.
    Firan, C.S., Nejdl, W., Paiu, R.: The benefit of using tag-based profiles. In: Almeida, V.A.F., Baeza-Yates, R.A. (eds.) LA-WEB, pp. 32–41. IEEE Computer Society (2007)Google Scholar
  7. 7.
    Golder, S., Huberman, B.A.: The structure of collaborative tagging systems. Journal of Information Sciences 32(2), 198–208 (2006)Google Scholar
  8. 8.
    Golder, S.A., Huberman, B.A.: Usage patterns of collaborative tagging systems. J. Inf. Sci. 32(2), 198–208 (2006)CrossRefGoogle Scholar
  9. 9.
    Heymann, P., Ramage, D., Garcia-Molina, H.: Social tag prediction. In: Myaeng, S.H., Oard, D.W., Sebastiani, F., Chua, T.S., Leong, M.K. (eds.) SIGIR, pp. 531–538. ACM (2008)Google Scholar
  10. 10.
    Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: BibSonomy: A Social Bookmark and Publication Sharing System. In: Proc. First Conceptual Structures Tool Interoperability Workshop, pp. 87–102. Aalborg (2006)Google Scholar
  11. 11.
    Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information Retrieval in Folksonomies: Search and Ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 411–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Marlow, C., Naaman, M., Boyd, D., Davis, M.: HT06, tagging paper, taxonomy, flickr, academic article, to read. In: Proc. of the 17th Conf. on Hypertext and Hypermedia, pp. 31–40. ACM Press (2006)Google Scholar
  13. 13.
    Vander Wal, T.: Folksonomy (2007),
  14. 14.
    Michlmayr, E., Cayzer, S.: Learning User Profiles from Tagging Data and Leveraging them for Personal(ized) Information Access. In: Proc. of the Workshop on Tagging and Metadata for Social Information Organization, 16th Int. World Wide Web Conference (WWW 2007) (2007)Google Scholar
  15. 15.
    Passant, A.: LODr – A Linking Open Data Tagging System. In: First Workshop on Social Data on the Web (SDoW 2008). CEUR Workshop Proceedings, vol. 405 (2008)Google Scholar
  16. 16.
    Passant, A., Laublet, P.: Meaning Of A Tag: A collaborative approach to bridge the gap between tagging and Linked Data. In: Proceedings of the WWW 2008 Workshop Linked Data on the Web (LDOW 2008), Beijing, China (2008)Google Scholar
  17. 17.
    Russell, B.C., Torralba, A.B., Murphy, K.P., Freeman, W.T.: LabelMe: A Database and Web-based tool for Image Annotation. International Journal of Computer Vision 77(1-3), 157–173 (2008)Google Scholar
  18. 18.
    Sigurbjörnsson, B., van Zwol, R.: Flickr tag recommendation based on collective knowledge. In: Proc. of 17th Int. World Wide Web Conference (WWW 2008), pp. 327–336. ACM Press (2008)Google Scholar
  19. 19.
    Wu, X., Zhang, L., Yu, Y.: Exploring social annotations for the semantic web. In: Carr, L., Roure, D.D., Iyengar, A., Goble, C.A., Dahlin, M. (eds.) WWW, pp. 417–426. ACM (2006)Google Scholar
  20. 20.
    Xu, S., Bao, S., Fei, B., Su, Z., Yu, Y.: Exploring folksonomy for personalized search. In: SIGIR 2008, pp. 155–162. ACM, New York (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ricardo Kawase
    • 1
  • George Papadakis
    • 1
    • 2
  • Fabian Abel
    • 3
  1. 1.L3S Research CenterLeibniz UniversityHannoverGermany
  2. 2.ICCSNational Technical University of AthensGreece
  3. 3.Web Information SystemsTU DelftThe Netherlands

Personalised recommendations