An Investigation of Hilbert’s Implicit Reasoning through Proof Discovery in Idle-Time

  • Phil Scott
  • Jacques Fleuriot
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6877)

Abstract

In this paper, we describe how we captured and investigated incidence reasoning in Hilbert’s Foundations of Geometry by using a new discovery tool integrated into an interactive proof assistant. Our tool exploits concurrency, inferring facts independently of the user with the incomplete proof as a guide. It explores the proof space, contributes tedious lemmas and discovers alternative proofs. We show how this tool allowed us to write readable formalised proof-scripts that correspond very closely to Hilbert’s prose arguments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birkhoff, G., Bennett, M.: Hilbert’s Grundlagen der Geometrie. Rendiconti del Circolo Matematico di Palermo 36, 343–389 (1987)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Boulton, R.: Efficiency in a Fully-Expansive Theorem Prover. Ph.D. thesis. Cambridge University (1993)Google Scholar
  3. 3.
    Boyer, C.B.: A History of Mathematics. John Wiley & Sons (1991)Google Scholar
  4. 4.
    de Bruijn, N.G.: The Mathematical Vernacular, a language for Mathematics with typed sets. In: Dybjer, P., et al. (eds.) Proceedings from the Workshop on Programming Logic, vol. 37 (1987)Google Scholar
  5. 5.
  6. 6.
  7. 7.
    Harrison, J.: HOL Light: a Tutorial Introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  8. 8.
    Heath, T.L.: Euclid: The Thirteen Books of The Elements, vol. 1. Dover Publications (1956)Google Scholar
  9. 9.
    Hilbert, D.: Foundations of Geometry. Open Court Classics, 10th edn. (1971)Google Scholar
  10. 10.
    Magaud, N., Narboux, J., Schreck, P.: Formalizing Desargues’ theorem in Coq using ranks. In: Symposium on Applied Computing, pp. 1110–1115 (2009)Google Scholar
  11. 11.
    Meikle, L.I., Fleuriot, J.D.: Formalizing Hilbert’s Grundlagen in Isabelle/Isar. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 319–334. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Meikle, L.I., Fleuriot, J.D.: Mechanical Theorem Proving in Computational Geometry. In: Hong, H., Wang, D. (eds.) ADG 2004. LNCS (LNAI), vol. 3763, pp. 1–18. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Gordon, M., Wadsworth, C.P., Milner, R.: Edinburgh LCF. LNCS, vol. 78. Springer, Heidelberg (1979)MATHGoogle Scholar
  14. 14.
    Milner, R., Bird, R.S.: The Use of Machines to Assist in Rigorous Proof [and Discussion]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 312(1522), 411–422 (1984)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Moore, E.H.: On the projective axioms of geometry. Transactions of the American Mathematical Society 3, 142–158 (1902)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Scott, P.: Mechanising Hilbert’s Foundations of Geometry in Isabelle. Master’s thesis. University of Edinburgh (2008)Google Scholar
  17. 17.
    Scott, P., Fleuriot, J.: Composable Discovery Engines for Interactive Theorem Proving. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 370–375. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Weyl, H.: David Hilbert and his mathematical work. Bulletin of the American Mathematical Society 50, 635 (1944)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Wiedijk, F.: Mizar Light for HOL Light. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 378–394. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Phil Scott
    • 1
  • Jacques Fleuriot
    • 1
  1. 1.Centre for Intelligent Systems and their Applications, Informatics ForumUniversity of EdinburghEdinburghUK

Personalised recommendations