Environment Characterization for Non-recontaminating Frontier-Based Robotic Exploration

  • Mikhail Volkov
  • Alejandro Cornejo
  • Nancy Lynch
  • Daniela Rus
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7047)


This paper addresses the problem of obtaining a concise description of a physical environment for robotic exploration. We aim to determine the number of robots required to clear an environment using non-recontaminating exploration. We introduce the medial axis as a configuration space and derive a mathematical representation of a continuous environment that captures its underlying topology and geometry. We show that this representation provides a concise description of arbitrary environments, and that reasoning about points in this representation is equivalent to reasoning about robots in physical space. We leverage this to derive a lower bound on the number of required pursuers. We provide a transformation from this continuous representation into a symbolic representation. Finally, we present a generalized pursuit-evasion algorithm. Given an environment we can compute how many pursuers we need, and generate an optimal pursuit strategy that will guarantee the evaders are detected with the minimum number of pursuers.


swarm robotics frontier-based exploration distributed pursuit- evasion environment characterization mathematical morphology planar geometry graph combinatorics game determinacy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler, M., Racke, H., Sivadasan, N., Sohler, C., Vocking, B.: Randomized pursuit-evasion in graphs. Combinatorics, Probability and Computing 12(03), 225–244 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Blum, H.: A transformation for extracting new descriptors of shape. Models for the Perception of Speech and Visual Form 19, 362–380 (1967)Google Scholar
  3. 3.
    Burgos, J.L.: Pursuit/evasion behaviors for multi-agent systems (2010)Google Scholar
  4. 4.
    Choi, H., Choi, S., Moon, H.: Mathematical theory of medial axis transform. Pacific Journal of Mathematics 181(1), 57–88 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Danielsson, P.: Euclidean distance mapping. Computer Graphics and Image Processing 14(3), 227–248 (1980)CrossRefGoogle Scholar
  6. 6.
    Dimitrov, P., Phillips, C., Siddiqi, K.: Robust and efficient skeletal graphs. In: CVPR, p. 1417. IEEE Computer Society (2000)Google Scholar
  7. 7.
    Durham, J.W., Franchi, A., Bullo, F.: Distributed pursuit-evasion with limited-visibility sensors via frontier-based exploration. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 3562–3568. IEEE (2010)Google Scholar
  8. 8.
    Gerkey, B., Thrun, S., Gordon, G.: Visibility-based pursuit-evasion with limited field of view. The International Journal of Robotics Research 25(4), 299 (2006)CrossRefGoogle Scholar
  9. 9.
    Giblin, P.J., Kimia, B.B.: Local forms and transitions of the medial axis. In: Siddiqi, K., Pizer, S.M. (eds.) Medial Representations, Computational Imaging and Vision, vol. 37, pp. 37–68. Springer, Netherlands (2008)Google Scholar
  10. 10.
    Guibas, L., Latombe, J., Lavalle, S., Lin, D., Motwani, R.: Visibility-based pursuit-evasion in a polygonal environment. Algorithms and Data Structures 1272, 17–30 (1997)Google Scholar
  11. 11.
    Guibas, L.J., Holleman, C., Kavraki, L.E.: A probabilistic roadmap planner for flexible objects with a workspace medial-axis-based sampling approach. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 1999, vol. 1, pp. 254–259. IEEE (1999)Google Scholar
  12. 12.
    Guibas, L., Latombe, J., LaValle, S., Lin, D., Motwani, R.: A visibility-based pursuit-evasion problem. Intnl. Journal of Computational Geometry and Applications 9(4/5), 471 (1999)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Holleman, C., Kavraki, L.E.: A framework for using the workspace medial axis in prm planners. In: Proceedings of IEEE International Conference on Robotics and Automation, ICRA 2000, vol. 2, pp. 1408–1413. IEEE (2000)Google Scholar
  14. 14.
    Isler, V., Sun, D., Sastry, S.: Roadmap based pursuit-evasion and collision avoidance. In: Proc. Robotics, Systems, & Science (2005)Google Scholar
  15. 15.
    Kolling, A., Carpin, S.: The graph-clear problem: definition, theoretical properties and its connections to multirobot aided surveillance. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007, pp. 1003–1008. IEEE (2007)Google Scholar
  16. 16.
    Kolling, A., Carpin, S.: Multi-robot surveillance: an improved algorithm for the graph-clear problem. In: IEEE International Conference on Robotics and Automation, ICRA 2008, pp. 2360–2365. IEEE (2008)Google Scholar
  17. 17.
    Kolling, A., Carpin, S.: Pursuit-evasion on trees by robot teams. IEEE Transactions on Robotics 26(1), 32–47 (2010)CrossRefGoogle Scholar
  18. 18.
    Kuijper, A.: Deriving the medial axis with geometrical arguments for planar shapes. Pattern Recognition Letters 28(15), 2011–2018 (2007)CrossRefGoogle Scholar
  19. 19.
    LaValle, S., Lin, D., Guibas, L., Latombe, J., Motwani, R.: Finding an unpredictable target in a workspace with obstacles. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, pp. 737–742. IEEE (1997)Google Scholar
  20. 20.
    Nowakowski, R., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discrete Mathematics 43(2-3), 235–239 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Parsons, T.: Pursuit-evasion in a graph. Theory and Applications of Graphs 642, 426–441 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Rodriguez, S., Denny, J., Zourntos, T., Amato, N.M.: Toward Simulating Realistic Pursuit-Evasion using a Roadmap-Based Approach. In: Boulic, R., Chrysanthou, Y., Komura, T. (eds.) MIG 2010. LNCS, vol. 6459, pp. 82–93. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Sachs, S., LaValle, S., Rajko, S.: Visibility-based pursuit-evasion in an unknown planar environment. The International Journal of Robotics Research 23(1), 3 (2004)CrossRefGoogle Scholar
  24. 24.
    Serra, J.: Image analysis and mathematical morphology. Academic Press, London (1983); [Review by Fensen, EB in: J. Microsc. 131 (1983) 258.] Technique Staining Microscopy, Review article General article, Mathematics, Cell size (PMBD, 185707888) (1982) Google Scholar
  25. 25.
    Suzuki, I., Yamashita, M.: Searching for a mobile intruder in a polygonal region. SIAM Journal on Computing 21, 863 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Volkov, M., Cornejo, A., Lynch, N., Rus, D.: Environment characterization for non-recontaminating frontier-based robotic exploration (full version) (2011),
  27. 27.
    Wilmarth, S., Amato, N., Stiller, P.: Maprm: A probabilistic roadmap planner with sampling on the medial axis of the free space. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 2, pp. 1024–1031. IEEE (1999)Google Scholar
  28. 28.
    Yamashita, M., Umemoto, H., Suzuki, I., Kameda, T.: Searching for mobile intruders in a polygonal region by a group of mobile searchers. Algorithmica 31(2), 208–236 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation, CIRA 1997, pp. 146–151. IEEE (1997)Google Scholar
  30. 30.
    Yamauchi, B.: Frontier-based exploration using multiple robots. In: Proceedings of the Second International Conference on Autonomous Agents, pp. 47–53. ACM (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mikhail Volkov
    • 1
  • Alejandro Cornejo
    • 1
  • Nancy Lynch
    • 1
  • Daniela Rus
    • 1
  1. 1.Computer Science and Artificial Intelligence LaboratoryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations