Enumerating Tatami Mat Arrangements of Square Grids

  • Alejandro Erickson
  • Mark Schurch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7056)

Abstract

We prove that the number of monomer-dimer tilings of an n×n square grid, with m < n monomers in which no four tiles meet at any point is m2m + (m + 1)2m + 1, when m and n have the same parity. In addition, we present a new proof of the result that there are n2n − 1 such tilings with n monomers, which divides the tilings into n classes of size 2n − 1. The sum of these over all m ≤ n has the closed form 2n − 1(3n − 4) + 2 and, curiously, this is equal to the sum of the squares of all parts in all compositions of n.

References

  1. 1.
    Alhazov, A., Morita, K., Iwamoto, C.: A note on tatami tilings. In: Proceedings of the 2009 LA Winter Symposium Mathematical Foundation of Algorithms and Computer Science, vol. 1691, pp. 1–7 (2010)Google Scholar
  2. 2.
    Benedetto, K.P., Loehr, N.A.: Tiling problems, automata, and tiling graphs. Theoretical Computer Science 407(1-3), 400–411 (2008)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Erickson, A., Ruskey, F., Schurch, M., Woodcock, J.: Monomer-dimer tatami tilings of rectangular regions. The Electronic Journal of Combinatorics 18(1), 24 (2011)MATHGoogle Scholar
  4. 4.
    Gale, D., Golomb, S.W., Haas, R.: Mathematical entertainments. The Mathematical Intelligencer 18(2), 38–47 (1996)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hock, J.L., McQuistan, R.B.: A note on the occupational degeneracy for dimers on a saturated two-dimensional lattice space. Discrete Applied Mathematics 8(1), 101–104 (1984)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Jovovic, V.: Comment on a027992 (2005), http://oeis.org/A027992
  7. 7.
    Knuth, D.E.: The Art of Computer Programming, vol 4A: Combinatorial Algorithms, Part 1, 1st edn. Addison-Wesley Professional (2011)Google Scholar
  8. 8.
    Merlini, D., Sprugnoli, R., Cecilia Verri, M.: Strip tiling and regular grammars. Theoretical Computer Science 242(1-2), 109–124 (2000)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Morrison, P., Morrison, P.: 100 or so books that shaped a century of science. American Scientist 87(6), 1 (1999)Google Scholar
  10. 10.
    Piesk, T.: Binary and compositions 5 (2010), http://commons.wikimedia.org/wiki/File:Binary_and_compositions_5.svg
  11. 11.
    Ruskey, F., Woodcock, J.: Counting fixed-height tatami tilings. The Electronic Journal of Combinatorics 16, 20 (2009)MathSciNetMATHGoogle Scholar
  12. 12.
    Stanley, R.P.: On dimer coverings of rectangles of fixed width. Discrete Applied Mathematics 12(1), 81–87 (1985)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alejandro Erickson
    • 1
  • Mark Schurch
    • 2
  1. 1.Department of Computer ScienceUniversity of VictoriaCanada
  2. 2.Mathematics and StatisticsUniversity of VictoriaCanada

Personalised recommendations