VCSELs pp 119-144 | Cite as

Single-Mode VCSELs

Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 166)

Abstract

The only active transverse mode in a truly single-mode VCSEL is the fundamental mode with a near Gaussian field distribution. A single-mode VCSEL produces a light beam of higher spectral purity, higher degree of coherence and lower divergence than a multimode VCSEL and the beam can be more precisely shaped and focused to a smaller spot. Such beam properties are required in many applications. In this chapter, after discussing applications of single-mode VCSELs, we introduce the basics of fields and modes in VCSELs and review designs implemented for single-mode emission from VCSELs in different materials and at different wavelengths. This includes VCSELs that are inherently single-mode as well as inherently multimode VCSELs where higher-order modes are suppressed by mode selective gain or loss. In each case we present the current state-of-the-art and discuss pros and cons. At the end, a specific example with experimental results is provided and, as a summary, the most promising designs based on current technologies are identified.

Keywords

Fundamental Mode Surface Relief Transverse Mode Distribute Antenna System Optical Confinement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.A. Tatum, VCSEL proliferation, in Vertical-Cavity Surface-Emitting Lasers XI, ed. byK.D. Choquette, J.K. Guenter, Proceedings of SPIE, vol. 6484 (2007), p. 648403-1Google Scholar
  2. 2.
    W. Hofmann, M.C. Amann, \(1.55\,{\upmu}\hbox{m}\) VCSEL arrays for high bandwidth WDM-PONs. IEEE Photon. Technol. Lett. 20(4), 291 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    K.A. Persson, C. Carlsson, A. Alping, Å. Haglund, J.S. Gustavsson, P. Modh, A. Larsson, WCDMA radio-over-fibre transmission experiment using singlemode VCSEL and multimode fibre. Electron. Lett. 46(6), 372 (2006)CrossRefGoogle Scholar
  4. 4.
    M. Grabherr, R. King, R. Jäger, D. Wiedenmann, P. Gerlach, D. Duckeck, C. Wimmer,Volume production of polarization controlled single-mode VCSELs, in Vertical-CavitySurface-Emitting Lasers XII, ed. by C. Lei, J.K. Guenter, Proceedings of SPIE, vol. 6908 (2008), p. 690803-1Google Scholar
  5. 5.
    N. Mukoyama, H. Otoma, J. Sakurai, N. Ueki, H. Nakayama, VCSEL array based light exposure system for laser printing, in Vertical-Cavity Surface-Emitting Lasers XII, ed. by C. Lei, J.K. Guenter, Proceedings of SPIE, vol. 6908 (2008), p. 69080H-1Google Scholar
  6. 6.
    D.K. Serkland, G.M. Peake, K.M. Geib, R. Lutwak, R.M. Garvey, M. Varghese, M. Mescher, VCSELs for atomic clocks, in Vertical-Cavity Surface-Emitting Lasers X, ed. by C. Lei,K.D. Choquette, Proceedings SPIE, vol. 6132 (2006), p. 613208-1Google Scholar
  7. 7.
    W. Hofmann, G. Böhm, M. Ortsiefer, M. Görblich, C. Lauer, N.H. Zhu, M.C. Amann, Long wavelength VCSELs for optical networks and trace gas monitoring, in Optoelectronic Devices: Physics, Fabrication and Application, ed. by J. Piprek, J.J. Wang, Proceedings of SPIE, vol. 6766 (2007), p. 67660F-1Google Scholar
  8. 8.
    J. Tatum, R. Chandler, B. Stapleton, VCSEL based reflective sensors tackle more demanding applications. Laser Focus World 39(9), 79 (2003)Google Scholar
  9. 9.
    K.D. Choquette, R.P. Schneider Jr., K.L. Lear, K.M. Geib, Low threshold voltage vertical cavity lasers fabricated by selective oxidation. Electron. Lett. 30(24), 2043 (1994)CrossRefGoogle Scholar
  10. 10.
    F.A. Kish, S.J. Carraci, N. Holonyak Jr., J.M. Dallesasse, K.C. Hsieh, M.J. Ries, S.C. Smith, R.D. Burnham, Planar native oxide index guided AlGaAs-GaAs quantum well heterostructure lasers. Appl. Phys. Lett. 59(14), 1755 (1991)ADSCrossRefGoogle Scholar
  11. 11.
    G.R. Hadley, Effective index model for vertical cavity surface emitting lasers. Opt. Lett. 20(13), 1483 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, 2nd edn. (Wiley, Hoboken, 2007), p. 325Google Scholar
  13. 13.
    J.P. Zhang, K. Petermann, Numerical analysis of transverse modes in gain guided vertical cavity surface emitting lasers. IEE Proc.-Optoelectron. 142(1), 29 (1995)CrossRefGoogle Scholar
  14. 14.
    M. Farzaneh, R. Amataya, D. Lürssen, K.J. Greenberg, W.E. Rockwell, J.A. Hudgings, Temperature profiling of VCSELs by thermoreflectance microscopy. IEEE Photon. Technol. Lett. 19(8), 601 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    J.S. Gustavsson, J.A. Vukusic, J. Bengtsson, A. Larsson, A comprehensive model for the modal dynamics of vertical cavity surface emitting lasers. IEEE J. Quantum Electron. 38(2), 203 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    A.K. Jansenvan Doorn, M.P. van Exter, J.P. Woerdman, Effects of transverse anisotropy on VCSEL spectra. Electron. Lett. 30(23), 1941 (1994)CrossRefGoogle Scholar
  17. 17.
    K.D. Choquette, R.P. Schneider Jr., K.L. Lear, R.E. Leibenguth, Gain dependent polarization properties of vertical cavity lasers. IEEE J. Select. Topics Quantum Electron. 1(2), 661 (1995)CrossRefGoogle Scholar
  18. 18.
    J.G. McInerney, A. Mooradian, A. Lewis, A.V. Shchegrov, E.M. Strzelecka, D. Lee, J.P. Watson, M. Liebman, G.P. Carey, B.D. Cantos, W.R. Hitchens, D. Heald, High power surface emitting semiconductor laser with extended vertical compound cavity. Electron. Lett. 39(6), 523 (2003)CrossRefGoogle Scholar
  19. 19.
    C.J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L.T. Florez, J.P. Harbison, N.G. Stoffel, Transverse mode characteristics of vertical cavity surface emitting lasers. Appl. Phys. Lett. 57(3), 218 (1990)ADSCrossRefGoogle Scholar
  20. 20.
    K.L. Lear, R.P. Schneider, K.D. Choquette, S.P. Kilcoyne, J.J. Figiel, J.C. Zolper, Vertical cavity surface emitting lasers with 21% efficiency by metal organic vapour phase epitaxy. IEEE Photon. Technol. Lett. 6(9), 1053 (1994)ADSCrossRefGoogle Scholar
  21. 21.
    C. Jung, R. Jäger, M. Grabherr, P. Schnitzer, R. Michalzik, B. Weigl, S. Müller, K.J. Ebeling, 4.8 mW single mode oxide confined top surface emitting vertical cavity laser diodes. Electron. Lett. 33(21), 1790 (1997)CrossRefGoogle Scholar
  22. 22.
    H. Riechert, A. Ramakrishnan, G. Steinle, Development of InGaAsN-based \(1.3\,{\upmu}\hbox{m}\) VCSELs. Semicond. Sci. Technol. 17(8), 892 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    E.R. Hegblom, B.J. Thibeault, R.L. Naone, L.A. Coldren, Vertical cavity lasers with tapered oxide apertures for low scattering loss. Electron. Lett. 33(10), 869 (1997)CrossRefGoogle Scholar
  24. 24.
    K.D. Choquette, H.Q. Hou, G.R. Hadley, K.M. Geib, D. Mathes, R. Hull, High power single transverse mode selectively oxidized VCSELs, in Proceedings 1997 LEOS Summer Topical Meeting, Montreal, Canada (1997), p. 73Google Scholar
  25. 25.
    S.A. Blokhin, N.A. Maleev, A.G. Kuzmenkov, A.V. Sakharov, M.M. Kulagina, Y.M. Shernyakov, I.I. Novikov, M.V. Maximov, V.M. Ustinov, A.R. Kovsh, S.S. Mikhrin,N.N. Ledentsov, G. Lin, J.Y. Chi, Vertical cavity surface emitting lasers based on submonolayer InGaAs quantum dots. IEEE J. Quantum Electron. 42(9), 851 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    C. Carlsson, C.A. Barrios, E.R. Messmer, A. Lövqvist, J. Halonen, J. Vukusic, M. Ghisoni, S. Lourdudoss, A. Larsson, Performance characteristics of buried heterostructure VCSELs using semi-insulating GaInP:Fe regrowth. IEEE J. Quantum Electron. 37(7), 945 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Ohiso, H. Okamoto, R. Iga, K. Kishi, C. Amano, Single transverse mode operation of \(1.55\,{\upmu}\hbox{m}\) buried heterostructure vertical cavity surface emitting lasers. IEEE Photon. Technol. Lett. 14(6), 739 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    D.A. Francis, D.B. Young, J. Walker, A. Verma, D. Gold, C. Decker, Monolithic 1310 nm buried heterostructure VCSEL using InGaAsP/InP DBR reflectors, in Optoelectronic Devices: Physics, Fabrication and Application II, ed. by J. Piprek, Proceedings of SPIE, vol. 6013 (2005), p. 60130A-1Google Scholar
  29. 29.
    M. Ortsiefer, W. Hofmann, E. Rönneberg, A. Boletti, A. Gatto, P. Boffi, R. Shau, C. Neumeyr, G. Böhm, M. Martinelli, M.C. Amann, High speed \(1.3\,{\upmu}\hbox{m}\) VCSELs for 12.5 Gbit/s optical interconnects. Electron. Lett. 44(16), 974 (2008)CrossRefGoogle Scholar
  30. 30.
    N. Nishiyama, C. Caneau, M. Sauer, A. Kobyakov, C.E. Zah, InP-based long wavelength VCSELs: their characteristics and applications, in Optoelectronic Materials and Devices II, ed. by Y. Nakano, Proceedings of SPIE, vol. 6782 (2007), p. 67820M-1Google Scholar
  31. 31.
    M. Ortsiefer, S. Baydar, K. Windhorn, G. Böhm, J. Rosskopf, E. Rönneberg, W. Hofmann, M.C. Amann, 2.5 mW single mode operation of \(1.55\,{\upmu}\hbox{m}\) buried tunnel junction VCSELs. IEEE Photon. Technol. Lett. 17(8), 1596 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    A. Syrbu, A. Mereuta, V. Iakovlev, A. Caliman, P. Royo, E. Kapon, 10 Gbps VCSELs with high single mode output in 1310 nm and 1550 nm wavelength bands, in Proceedings Conference on Optical Fiber Communication, paper OThS2, San Diego, CA, USA (2008)Google Scholar
  33. 33.
    A. Caliman, V. Iakovlev, A. Mereuta, A. Sirbu, G. Suruceanu, E. Kapon, 8 mW fundamental mode output of wafer-fused VCSELs emitting in the 1550 nm band, in Proceedings Conference on Lasers and Electro Optics, paper CMRR1, Baltimore, MD, USA (2009)Google Scholar
  34. 34.
    C.K. Lin, D.P. Bour, J. Zhu, W.H. Perez, M.H. Leary, A. Tandon, S.W. Corzine, M.R.T. Tan, High temperature continuous wave operation of \(1.3 \; \hbox{and}\; 1.55\,{\upmu}\hbox{m}\) VCSELs with InP/air gap DBRs. IEEE J. Select. Topics Quantum Electron. 9(5), 1415 (2003)CrossRefGoogle Scholar
  35. 35.
    D. Feezell, L.A. Johansson, D.A. Buell, L.A. Coldren, Efficient modulation of InP-based \(1.3\,{\upmu}\hbox{m}\) VCSELs with AsSb-based DBRs. IEEE Photon. Technol. Lett. 17(11), 2253 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    M.R. Park, O.K. Kwon, W.S. Han, K.H. Lee, S.J. Park, B.S. Yoo, All epitaxial InAlGaAs-InP VCSELs in the \(1.3\hbox{--}1.6\,{\upmu}\hbox{m}\) wavelength range for CWDM band applications. IEEE Photon. Technol. Lett. 18(16), 1717 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    D. Feezell, D.A. Buell, D. Lofgreen, M. Mehta, L.A. Coldren, Optical design of InAlGaAs low loss tunnel junction apertures for long wavelength vertical cavity lasers. IEEE J. Quantum Electron. 42(5), 494 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    D.S. Song, S.H. Kim, H.G. Park, C.K. Kim, Y.H. Lee, Single fundamental mode photonic crystal vertical cavity surface emitting lasers. Appl. Phys. Lett. 80(21), 3901 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    A.J. Danner, T.S. Kim, K.D. Choquette, Single fundamental mode photonic crystal vertical cavity laser with improved output power. Electron. Lett. 41(6), 20057841 (2005)CrossRefGoogle Scholar
  40. 40.
    H.P. Yang, I.C. Hsu, Y.H. Chang, F.I. Lai, H.C. Yu, G. Lin, R.S. Hsiao, N.A. Maleev,S.A. Blokhin, H.C. Kuo, J.Y. Chi, Characteristics of InGaAs submonolayer quantum dot and InAs quantum dot photonic crystal vertical cavity surface emitting lasers. J. Lightwave Technol. 26(11), 1387 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    R. Stevens, P. Gilet, A. Larrue, L. Grenouillet, N. Olivier, P. Grosse, K. Gilbert, B. Hladys, B.B. Bakir, J. Berggren, Mattias Hammar, A. Chelnokov, Microstructured photonic crystal for single mode long wavelength VCSELs, in Semiconductor Lasers and Laser Dynamics III, ed. by K.P. Panajotov, M. Sciamanna, A.A. Valle, R. Michalzik, Proceedings of SPIE, vol 6997 (2008), p. 69970X-1Google Scholar
  42. 42.
    F. Romstad, S. Bischoff, M. Juhl, S. Jacobsen, D. Birkedal, Photonic crystals for long wavelength single mode VCSELs, in Vertical-Cavity Surface-Emitting Lasers XII, ed. by C. Lei, J.K. Guenter, Proceedings of SPIE, vol 6908 (2008), p. 69080C-1Google Scholar
  43. 43.
    A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, T. Baba, High power single mode vertical cavity surface emitting lasers with triangular holey structure. Appl. Phys. Lett. 85(22), 5161 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    P.O. Leisher, A.J. Danner, J.J. Raftery Jr., K.D. Choquette, Proton implanted single mode holey vertical cavity surface emitting lasers. Electron. Lett. 41(18), 20052394 (2008)Google Scholar
  45. 45.
    E.W. Young, K.D. Choquette, S.L. Chuang, K.M. Geib, A.J. Fischer, A.A. Allerman, Single transverse mode vertical cavity lasers under continuous and pulsed operation. IEEE Photon. Technol. Lett. 13(9), 927 (2001)ADSCrossRefGoogle Scholar
  46. 46.
    F.I. Lai, T.H. Hsueh, Y.H. Chang, H.C. Kuo, S.C. Wang, L.H. Laih, C.P. Song, H.P. Yang, 10 Gb/s single mode vertical cavity surface emitting laser with large aperture and oxygen implantation. Semicond. Sci. Technol. 19(8), L86 (2004)ADSCrossRefGoogle Scholar
  47. 47.
    H.J. Unold, S.W.Z. Mahmoud, R. Jäger, M. Kicherer, M.C. Riedl, K.J. Ebeling, Improved single mode VCSEL performance by introducing a long cavity. IEEE Photon. Technol. Lett. 12(8), 939 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    H.J. Unold, M.C. Riedl, S.W.Z. Mahmoud, R. Jäger, K.J. Ebeling, Long monolithic cavity VCSELs for high single mode power. Electron. Lett. 37(3), 178 (2001)CrossRefGoogle Scholar
  49. 49.
    S.W.Z. Mahmoud, H.J. Unold, W. Schmid, R. Jäger, R. Michalzik, K.J. Ebeling, Analysis of longitudinal mode wave guiding in vertical cavity surface emitting lasers with long monolithic cavity. Appl. Phys. Lett. 78(5), 586 (2001)ADSCrossRefGoogle Scholar
  50. 50.
    R.A. Morgan, G.D. Guth, M.W. Focht, M.T. Asom, K. Kojima, L.E. Rogers, S.E. Callis, Transverse mode control of vertical cavity top surface emitting lasers. IEEE Photon. Technol. Lett. 4(4), 374 (1993)ADSCrossRefGoogle Scholar
  51. 51.
    N. Ueki, A. Sakamoto, T. Nakamura, H. Nakayama, J. Sakurai, H. Otoma, Y. Miyamoto, M. Yoshikawa, M. Fuse, Single transverse mode 3.4 mW emission of oxide confined 780 nm VCSELs. IEEE Photon. Technol. Lett. 11(12), 1539 (1999)ADSCrossRefGoogle Scholar
  52. 52.
    H. Otoma, A. Murakami, Y. Kuwata, N. Ueki, N. Mukoyama, T. Kondo, A. Sakamoto, S. Omori, H. Nakayama, T. Nakamora, Single mode oxide confined VCSEL for printers and sensors, in Proceedings Electronics System Integration Technology Conference, Dresden, Germany (2006), p. 80Google Scholar
  53. 53.
    P.D. Floyd, M.G. Peters, L.A. Coldren, J.L. Merz, Suppression of higher order transverse modes in vertical cavity lasers by impurity induced disordering. IEEE Photon. Technol. Lett. 7(12), 1388 (1995)ADSCrossRefGoogle Scholar
  54. 54.
    J.W. Shi, C.C. Chen, Y.S. Wu, S.H. Guol, C. Kuo, Y.J. Yang, High power and high speed Zn-diffusion single fundamental mode vertical cavity surface emitting lasers at 850 nm wavelength. IEEE Photon. Technol. Lett. 20(13), 1121 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    H. Martinsson, J.A. Vukusic, M. Grabherr, R. Michalzik, R. Jäger, K.J. Ebeling, A. Larsson, Transverse mode selection in large area oxide confined vertical cavity surface emitting lasers using a shallow surface relief. IEEE Photon. Technol. Lett. 11(12), 1536 (1999)ADSCrossRefGoogle Scholar
  56. 56.
    H.J. Unold, M. Grabherr, F. Eberhard, F. Mederer, R. Jäger, M. Riedl, K.J. Ebeling, Increased area oxidised single fundamental mode VCSEL with self-aligned shallow surface relief. Electron. Lett. 35(16), 1340 (1999)CrossRefGoogle Scholar
  57. 57.
    H.J. Unold, S.W.Z. Mahmoud, R. Jäger, M. Grabherr, R. Michalzik, K.J. Ebeling, Large area single mode VCSELs and the self-aligned surface relief. IEEE J. Select. Topics Quantum Electron. 7(2), 386 (2001)CrossRefGoogle Scholar
  58. 58.
    Å. Haglund, J.S. Gustavsson, J. Vukusic, P. Modh, A. Larsson, Single fundamental mode output power exceeding 6 mW from VCSELs with a shallow surface relief. IEEE Photon. Technol. Lett. 16(2), 368 (2004)ADSCrossRefGoogle Scholar
  59. 59.
    A. Kroner, F. Rinaldi, J.M. Ostermann, R. Michalzik, High-performance single fundamental mode AlGaAs VCSELs with mode-selective mirror reflectivities. Opt. Commun. 270(2), 332 (2007)ADSCrossRefGoogle Scholar
  60. 60.
    Å. Haglund, J.S. Gustavsson, P. Modh, A. Larsson, Dynamic mode stability analysis of surface relief VCSELs under strong RF modulation. IEEE Photon. Technol. Lett. 17(8), 1602 (2005)ADSCrossRefGoogle Scholar
  61. 61.
    F. Rinaldi, J.M. Ostermann, A. Kroner, R. Michalzik, High-performance AlGaAs-based VCSELs emitting in the 760 nm wavelength range. Opt. Commun. 270(2), 310 (2007)ADSCrossRefGoogle Scholar
  62. 62.
    H.C. Kuo, Y.H. Chang, Y.A. Chang, F.I. Lai, J.T. Chu, M.Y. Tsai, S.C. Wang, Single mode \(1.27\,{\upmu}\hbox{m}\) InGaAs:Sb-GaAs-GaAsP quantum well vertical cavity surface emitting lasers. IEEE J. Select. Topics Quantum Electron. 11(1), 121 (2005)CrossRefGoogle Scholar
  63. 63.
    E. Söderberg, P. Modh, J.S. Gustavsson, A. Larsson, Z.Z. Zhang, J. Berggren, M. Hammar, High speed, high temperature operation of \(1.28\,{\upmu}\hbox{m}\) singlemode InGaAs VCSELs. Electron. Lett. 42(17), 978 (2006)CrossRefGoogle Scholar
  64. 64.
    A.C. Lehman, E.A. Yamaoka, C.W. Willis, K.D. Choquette, K.M. Geib, A.A. Allerman, Variable reflectance vertical cavity surface emitting lasers. Electron. Lett. 43(8), 460 (2007)CrossRefGoogle Scholar
  65. 65.
    R. Marcks von Würtemberg, P. Sundgren, J. Berggren, M. Hammar, M. Ghisoni, E. Ödling, V. Oscarsson, J. Malmquist, \(1.3\,{\upmu}\hbox{m}\) InGaAs vertical cavity surface emitting lasers with mode filter for single mode operation. Appl. Phys. Lett. 85(21), 4851 (2004)ADSCrossRefGoogle Scholar
  66. 66.
    L.J. Mawst, “Anti” up the aperture. IEEE Circuits Devices Mag. 19(2), 34 (2003)CrossRefGoogle Scholar
  67. 67.
    Y.A. Wu, G.S. Li, W. Yuen, C. Caneau, C.J. Chang-Hasnain, High yield processing and single mode operation of passive antiguide region vertical cavity lasers. IEEE J. Select. Topics Quantum Electron. 3(2), 429 (1997)CrossRefGoogle Scholar
  68. 68.
    T.H. Oh, M.R. McDaniel, D.L. Huffaker, D.G. Deppe, Cavity-induced antiguiding in a selectively oxidized vertical cavity surface emitting laser. IEEE Photon. Technol. Lett. 10(1), 12 (1998)ADSCrossRefGoogle Scholar
  69. 69.
    K.D. Choquette, G.R. Hadley, H.Q. Hou, K.M. Geib, B.E. Hammons, Leaky mode vertical cavity lasers using cavity resonance modifications. Electron. Lett. 34(10), 991 (1998)CrossRefGoogle Scholar
  70. 70.
    T.H. Oh, O.B. Shchekin, D.G. Deppe, Single mode operation in an antiguided vertical cavity surface emitting laser using low temperature grown AlGaAs dielectric aperture. IEEE Photon. Technol. Lett. 10(8), 1064 (1998)ADSCrossRefGoogle Scholar
  71. 71.
    D. Zhou, L.J. Mawst, Simplified antiresonant reflecting optical waveguide type vertical cavity surface emitting lasers. Appl. Phys. Lett. 76(13), 1659 (2000)ADSCrossRefGoogle Scholar
  72. 72.
    D. Zhou, L.J. Mawst, High power single mode antiresonant reflecting optical waveguide type vertical cavity surface emitting lasers. IEEE J. Quantum Electron. 38(12), 1599 (2002)ADSCrossRefGoogle Scholar
  73. 73.
    A.J. Fischer, K.D. Choquette, W.W. Chow, A.A. Allerman, D.K. Serkland, K.M. Geib, High single mode power observed from a coupled resonator vertical cavity laser diode. Appl. Phys. Lett. 79(25), 4079 (2001)ADSCrossRefGoogle Scholar
  74. 74.
    J.S. Gustavsson, Å. Haglund, J. Bengtsson, A. Larsson, Dynamic behaviour of fundamental-mode stabilized VCSELs using a shallow surface relief. IEEE J. Quantum Electron. 40(6), 607 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Microtechnology and Nanoscience, Photonics LaboratoryChalmers University of TechnologyGöteborgSweden

Personalised recommendations