Advertisement

Acute Triangulations of the Cuboctahedral Surface

  • Xiao Feng
  • Liping Yuan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7033)

Abstract

In this paper we prove that the surface of the cuboctahedron can be triangulated into 8 non-obtuse triangles and 12 acute triangles. Furthermore, we show that both bounds are the best possible.

Keywords

Adjacent Vertex Adjacent Pair Polyhedral Surface Geodesic Triangle Triangular Face 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burago, Y.D., Zalgaller, V.A.: Polyhedral embedding of a net, vol. 15, pp. 66–80. Vestnik Leningrad. Univ. (1960) (Russian)Google Scholar
  2. 2.
    Cassidy, C., Lord, G.: A square acutely triangulated. J. Recr. Math. 13, 263–268 (1980/1981)MathSciNetGoogle Scholar
  3. 3.
    Gardner, M.: Mathematical games, A fifth collection of  “brain-teasers”. Sci. Amer. 202(2), 150–154 (1960)CrossRefGoogle Scholar
  4. 4.
    Gardner, M.: Mathematical games, The games and puzzles of Lewis Carroll, and the answers to February’s problems. Sci. Amer. 202(3), 172–182 (1960)CrossRefGoogle Scholar
  5. 5.
    Gardner, M.: New Mathematical Diversions. Mathematical Association of America, Washington D.C (1995)MATHGoogle Scholar
  6. 6.
    Hangan, T., Itoh, J., Zamfirescu, T.: Acute triangulations. Bull. Math. Soc. Sci. Math. Roumanie 43(91(3-4)), 279–285 (2000)Google Scholar
  7. 7.
    Itoh, J., Yuan, L.: Acute triangulations of flat tori. Europ. J. Comb. 30, 1–4 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Itoh, J., Zamfirescu, T.: Acute triangulations of the regular dodecahedral surface. Europ. J. Comb. 28, 1072–1086 (2007)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Itoh, J., Zamfirescu, T.: Acute triangulations of the regular icosahedral surface. Discrete Comput. Geom. 31, 197–206 (2004)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Maehara, H.: On Acute Triangulations of Quadrilaterals. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 2000. LNCS, vol. 2098, pp. 237–354. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Maehara, H.: Acute triangulations of polygons. Europ. J. Comb. 23, 45–55 (2002)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Manheimer, W.: Solution to Problem E1406: Dissecting an obtuse triangle into acute triangles. Amer. Math. Monthly 67, 923 (1960)MathSciNetGoogle Scholar
  13. 13.
    Saraf, S.: Acute and nonobtuse triangulations of polyhedral surfaces. Europ. J. Comb. 30, 833–840 (2009)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Yuan, L.: Acute triangulations of pentagons. Bull. Math. Soc. Sci. Math. Roumanie 53(101), 393–410 (2010)MathSciNetMATHGoogle Scholar
  15. 15.
    Yuan, L.: Acute triangulations of polygons. Discrete Comput. Geom. 34, 697–706 (2005)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Yuan, L.: Acute triangulations of trapezoids. Discrete Appl. Math. 158, 1121–1125 (2010)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Yuan, L., Zamfirescu, T.: Acute triangulations of Flat Möbius strips. Discrete Comput. Geom. 37, 671–676 (2007)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Yuan, L., Zamfirescu, C.T.: Acute triangulations of double quadrilaterals. Bollettino U. M. I. 10-B(8), 933–938 (2007)MATHGoogle Scholar
  19. 19.
    Zamfirescu, C.T.: Acute triangulations of the double triangle. Bull. Math. Soc. Sci. Math. Roumanie 47(3-4), 189–193 (2004)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xiao Feng
    • 1
  • Liping Yuan
    • 1
  1. 1.Hebei Normal UniversityShijiazhuangChina

Personalised recommendations