Spectral Composition of Semantic Spaces

  • Peter Wittek
  • Sándor Darányi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7052)


Spectral theory in mathematics is key to the success of as diverse application domains as quantum mechanics and latent semantic indexing, both relying on eigenvalue decomposition for the localization of their respective entities in observation space. This points at some implicit “energy” inherent in semantics and in need of quantification. We show how the structure of atomic emission spectra, and meaning in concept space, go back to the same compositional principle, plus propose a tentative solution for the computation of term, document and collection “energy” content.


Quantum Mechanic Latent Dirichlet Allocation Spectral Composition Latent Semantic Analysis Semantic Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    LeCun, Y., Chopra, S., Hadsell, R.: A tutorial on energy-based learning. In: Predicting Structured Data, pp. 1–59. MIT Press, Cambridge (2006)Google Scholar
  2. 2.
    Pettersen, B., Hawley, S.: A spectroscopic survey of red dwarf flare stars. Astronomy and Astrophysics 217, 187–200 (1989)Google Scholar
  3. 3.
    Landauer, T., Dumais, S.: A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review 104(2), 211–240 (1997)CrossRefGoogle Scholar
  4. 4.
    Gärdenfors, P.: Conceptual spaces: The geometry of thought. The MIT Press, Cambridge (2000)Google Scholar
  5. 5.
    Salton, G., Wong, A., Yang, C.: A vector space model for information retrieval. Journal of the American Society for Information Science 18(11), 613–620 (1975)zbMATHGoogle Scholar
  6. 6.
    Deerwester, S., Dumais, S., Furnas, G., Landauer, T., Harshman, R.: Indexing by latent semantic analysis. Journal of the American Society for Information Science 41(6), 391–407 (1990)CrossRefGoogle Scholar
  7. 7.
    Lund, K., Burgess, C.: Producing high-dimensional semantic spaces from lexical co-occurrence. Behavior Research Methods Instruments and Computers 28, 203–208 (1996)CrossRefGoogle Scholar
  8. 8.
    Bruza, P., Woods, J.: Quantum collapse in semantic space: interpreting natural language argumentation. In: Proceedings of QI 2008, 2nd International Symposium on Quantum Interaction. College Publications, Oxford (2008)Google Scholar
  9. 9.
    Lyons, J.: Introduction to theoretical linguistics. Cambridge University Press, New York (1968)CrossRefGoogle Scholar
  10. 10.
    Harris, Z.: Distributional structure. In: Harris, Z. (ed.) Papers in Structural and Transformational Linguistics. Formal Linguistics, pp. 775–794. Humanities Press, New York (1970)CrossRefGoogle Scholar
  11. 11.
    Bruza, P., Cole, R.: Quantum logic of semantic space: An exploratory investigation of context effects in practical reasoning. In: Artemov, S., Barringer, H., d’ Avila Garcez, A.S., Lamb, L., Woods, J. (eds.) We Will Show Them: Essays in Honour of Dov Gabbay. College Publications (2005)Google Scholar
  12. 12.
    Aerts, D., Czachor, M.: Quantum aspects of semantic analysis and symbolic artificial intelligence. Journal of Physics A: Mathematical and General 37, L123–L132 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kanerva, P., Kristofersson, J., Holst, A.: Random indexing of text samples for latent semantic analysis. In: Proceedings of CogSci 2000, 22nd Annual Conference of the Cognitive Science Society, Philadelphia, PA, USA, vol. 1036 (2000)Google Scholar
  14. 14.
    Blei, D., Ng, A., Jordan, M.: Latent Dirichlet allocation. The Journal of Machine Learning Research 3, 993–1022 (2003)zbMATHGoogle Scholar
  15. 15.
    Dhillon, I., Modha, D.: Concept decompositions for large sparse text data using clustering. Machine Learning 42(1), 143–175 (2001)CrossRefzbMATHGoogle Scholar
  16. 16.
    Kitto, K., Bruza, P., Sitbon, L.: Generalising unitary time evolution. In: Bruza, P., Sofge, D., Lawless, W., van Rijsbergen, K., Klusch, M. (eds.) QI 2009. LNCS, vol. 5494, pp. 17–28. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Beaver, D.: Presupposition and assertion in dynamic semantics. CSLI publications, Stanford (2001)Google Scholar
  18. 18.
    van Eijck, J., Visser, A.: Dynamic semantics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2010)Google Scholar
  19. 19.
    Frege, G.: Sense and reference. The Philosophical Review 57(3), 209–230 (1948)CrossRefGoogle Scholar
  20. 20.
    Baker, A.: Computational approaches to the study of language change. Language and Linguistics Compass 2(3), 289–307 (2008)MathSciNetGoogle Scholar
  21. 21.
    Salton, G.: Dynamic information and library processing (1975)Google Scholar
  22. 22.
    Beeferman, D., Berger, A., Lafferty, J.: A model of lexical attraction and repulsion. In: Proceedings of ACL 1997, 35th Annual Meeting of the Association for Computational Linguistics, Madrid, Spain, pp. 373–380. ACL, Morristown (1997)CrossRefGoogle Scholar
  23. 23.
    Shi, S., Wen, J., Yu, Q., Song, R., Ma, W.: Gravitation-based model for information retrieval. In: Proceedings of SIGIR 2005, 28th International Conference on Research and Development in Information Retrieval, Salvador, Brazil, pp. 488–495. ACM, New York (2005)Google Scholar
  24. 24.
    Dorrer, C., Londero, P., Anderson, M., Wallentowitz, S., Walmsley, I.: Computing with interference: all-optical single-query 50-element database search. In: Proceedings of QELS 2001, Quantum Electronics and Laser Science Conference, pp. 149–150 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Peter Wittek
    • 1
  • Sándor Darányi
    • 1
  1. 1.Swedish School of Library and Information ScienceGöteborg University & University of BoråsBoråsSweden

Personalised recommendations