Advertisement

Multi-view Pedestrian Recognition Using Shared Dictionary Learning with Group Sparsity

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7064)

Abstract

Pedestrian tracking in multi-camera is an important task in intelligent visual surveillance system, but it suffers from the problem of large appearance variations of the same person under different cameras. Inspired by the success of existing view transformation model in multi-view gait recognition, we present a novel view transformation model based approach named shared dictionary learning with group sparsity to address the problem. It projects the pedestrian appearance feature descriptor in probe view into the gallery one before feature descriptors matching. In this case, L 1, ∞  regularization over the latent embedding ensure the lower reconstruction error and more stable feature descriptors generation, comparing with the existing Singular Value Decomposition. Although the overall optimization function is not global convex, the Nesterovs optimal gradient scheme ensure the efficiency and reliability. Experiments on VIPeR dataset show that our approach reaches the state-of-the-art performance.

Keywords

multiview learning dimension reduction stochastic neighbor embedding image retrieval 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Su, H., Sun, M., Fei-Fei, L., Savarese, S.: Learning a dense multi-view representation for detection, viewpoint classification and synthesis of object categories. In: ICCV, pp. 213–220 (2009)Google Scholar
  2. 2.
    Wu, B., Ram, N.: Cluster boosted tree classifier for multi-view, multi-pose object detection. In: ICCV, pp. 1–8 (2007)Google Scholar
  3. 3.
    Weinland, D., Boyer, E., Ronfard, R.: Action recognition from arbitrary views using 3d exemplars. In: ICCV, pp. 1–7 (2007)Google Scholar
  4. 4.
    Junejo, I.N., Dexter, E., Laptev, I., Pérez, P.: Cross-view action recognition from temporal self-similarities. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 1–8. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Prosser, B., Zheng, W.S., Gong, S., Xiang, T.: Person re-identification by support vector ranking. In: BMVC, pp. 21.1–21.11 (2010)Google Scholar
  6. 6.
    Gray, D., Tao, H.: Viewpoint Invariant Pedestrian Recognition with an Ensemble of Localized Features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 262–275. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Dikmen, M., Akbas, E., Huang, T.S., Ahuja, N.: Pedestrian Recognition with a Learned Metric. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part IV. LNCS, vol. 6495, pp. 501–512. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Bashir, K., Xiang, T., Gong, S.: Cross-view gait recognition using correlation strength. In: BMVC, pp. 109.1–109.11 (2010)Google Scholar
  9. 9.
    Makihara, Y., Sagawa, R., Mukaigawa, Y., Echigo, T., Yagi, Y.: Gait Recognition using a View Transformation Model in the Frequency Domain. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 151–163. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Kusakunniran, W., Wu, Q., Li, H., Zhang, J.: Multiple views gait recognition using view transformation model based on optimized gait energy image. In: ICCV Workshop, pp. 1058–1064 (2009)Google Scholar
  11. 11.
    Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. Trans. PAMI 31, 210–227 (2009)CrossRefGoogle Scholar
  12. 12.
    Yang, M., Zhang, L.: Gabor Feature Based Sparse Representation for Face Recognition with Gabor Occlusion Dictionary. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 448–461. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Jenatton, R., Obozinski, G., Bach, F.: Structured sparse principal component analysis. In: AISTATS, pp. 366–373 (2010)Google Scholar
  14. 14.
    Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32 (2004)Google Scholar
  15. 15.
    Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In: NIPS, pp. 801–808 (2007)Google Scholar
  16. 16.
    Huang, J., Huang, X., Metaxas, D.: Learning with dynamic group sparsity. In: ICCV, pp. 64–71 (2009)Google Scholar
  17. 17.
    Bengio, S., Pereira, F., Singer, Y., Strelow, D.: Group sparse coding. In: NIPS, pp. 82–89 (2009)Google Scholar
  18. 18.
    Chen, X., Pan, W., Kwok, J.T., Carbonell, J.G.: Accelerated gradient method for multi-task sparse learning problem. In: ICDM, pp. 746–751 (2009)Google Scholar
  19. 19.
    Jia, Y., Salzmann, M., Darrell, T.: Factorized latent spaces with structured sparsity. In: NIPS, pp. 982–990 (2010)Google Scholar
  20. 20.
    Nesterov, Y.: Gradient methods for minimizing composite objective function. Technical report, Euro. (2007)Google Scholar
  21. 21.
    Vedaldi, A., Fulkerson, B.: Vlfeat – an open and portable library of computer vision algorithms. In: ACM Multimedia, pp. 1469–1472 (2010)Google Scholar
  22. 22.
    Ojala, T., Pietik1in, M., Harwood, D.: Performance evaluation of texture measures with classification based on kullback discrimination of distributions. In: ICPR, pp. 582–585 (2004)Google Scholar
  23. 23.
    Weinberger, K., Blitzer, J., Saul, L.: Distance metric learning for large margin nearest neighbor classification. In: NIPS, pp. 1473–1480 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.National Laboratory of Pattern RecognitionInstitute of Automation, Chinese Academy of SciencesBeijingChina
  2. 2.Chinese University of Hong KongHong Kong, China
  3. 3.Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information TechnologyUniversity of TechnologySydneyAustralia

Personalised recommendations