Skip to main content

A Method to Construct Visual Recognition Algorithms on the Basis of Neural Activity Data

  • Conference paper
Neural Information Processing (ICONIP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7064))

Included in the following conference series:

Abstract

Visual recognition by animals significantly outperforms man-made algorithms. The brain’s intelligent choice of visual features is considered to be underlying this performance gap. In order to attain better performance for man-made algorithms, we suggest using the visual features that are used in the brain in these algorithms. For this goal, we propose to obtain visual features correlated with the brain activity by applying a kernel canonical correlation analysis (KCCA) method to pairs of image data and neural data recorded from the brain of an animal exposed to the images. It is expected that only the visual features that are highly correlated with the neural activity provide useful information for visual recognition. Applied to hand-written digits as image data and activity data of a multi-layer neural network model as a model for a brain, the method successfully extracted visual features used in the neural network model. Indeed, the use of these visual features in the support vector machine (SVM) made it possible to discriminate the hand-written digits. Since this discrimination required to utilize the knowledge possessed in the neural network model, a simple application of the usual SVM without the use of these features could not discriminate them. We further demonstrate that even the use of non-digit hand-written characters for the KCCA extracts visual features which enable the SVM to discriminate the hand-written digits. This indicates the versatile applicability of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Logothetis, N.K.: What We Can Do and What We Cannot Do with fMRI. Nature 453, 869–878 (2008)

    Article  Google Scholar 

  2. Ayzenshtat, I., Meirovithz, E., Edelman, H., Werner-Reiss, U., Bienenstock, E., Abeles, M., Slovin, H.: Precise Spatiotemporal Patterns among Visual Cortical Areas and Their Relation to Visual Stimulus Processing. J. Neurosci. 30, 11232–11245 (2010)

    Article  Google Scholar 

  3. Cheng, A., Goncalves, J.T., Golshani, P., Arisaka, K., Portera-Cailliau, C.: Simultaneous Two-photon Calcium Imaging at Different Depths with Spatiotemporal Multiplexing. Nature Methods 8, 139–142 (2011)

    Article  Google Scholar 

  4. Kiani, R., Esteky, H., Mirpour, K., Tanaka, K.: Object Category Structure in Response Patterns of Neuronal Population in Monkey Inferior Temporal Cortex. J. Neurophysiol. 97, 4296–4309 (2007)

    Article  Google Scholar 

  5. Wu, M.C., David, S.V., Gallant, J.L.: Complete Functional Characterization of Sensory Neurons by System Identification. Annu. Rev. Neurosci. 29, 477–505 (2006)

    Article  Google Scholar 

  6. Jones, J.P., Palmer, L.A.: An Evaluation of the Two-dimensional Gabor Filter Model of Simple Receptive Fields in Cat Striate Cortex. J. Neurophysiol. 58, 1233–1258 (1987)

    Google Scholar 

  7. Akaho, S.: A Kernel Method for Canonical Correlation Analysis. In: Proc. of International Meeting of the Psychometric Society (IMPS 2001), Springer, Heidelberg (2001)

    Google Scholar 

  8. Bach, F.R., Jordan, M.I.: Kernel Independent Component Analysis. J. Mach. Learn. Res. 3, 1–48 (2002)

    MATH  Google Scholar 

  9. Vinokourov, A., Shawe-Taylor, J., Cristianini, N.: Inferring a Semantic Representation of Text via Cross-language Correlation Analysis. In: Advances in Neural Information Processing Systems, vol. 15, pp. 1473–1480. MIT Press, Cambridge (2002)

    Google Scholar 

  10. Suetani, H., Iba, Y., Aihara, K.: Detecting Generalized Synchronization between Chaotic Signals: a Kernel-based Approach. J. Physics A 39, 10723–10742 (2006)

    Article  MATH  Google Scholar 

  11. Hardoon, D.R., Mourao-Miranda, J., Brammer, M., Shawe-Taylor, J.: Unsupervised Analysis of fMRI Data using Kernel Canonical Correlation. Neuroimage 37, 1250–1259 (2007)

    Article  Google Scholar 

  12. Macke, J.H., Zeck, G., Bethge, M.: Receptive Fields without Spike-triggering. In: Advances in Neural Information Processing Systems, vol. 21, pp. 969–976. MIT Press, Cambridge (2008)

    Google Scholar 

  13. Bießmann, F., Meinecke, F.C., Gretton, A., Rauch, A., Rainer, G., Logothetis, N.K., Müller, K.-R.: Temporal Kernel CCA and its Application in Multimodal Neuronal Data Analysis. Machine Learning 79, 5–27 (2010)

    Article  Google Scholar 

  14. Fukushima, K.: Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position. Biol. Cybern. 36, 193–202 (1980)

    Article  MATH  Google Scholar 

  15. LeCun, Y., Huang, F.J., Bottou, L.: Learning Methods for Generic Object Recognition with Invariance to Pose and Lighting. In: CVPR, pp. 97–104. IEEE Press (2004)

    Google Scholar 

  16. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust Object Recognition with Cortex-like Mechanisms. IEEE PAMI 29, 411–426 (2007)

    Article  Google Scholar 

  17. Hammer, B., Gersmann, K.: A Note on the Universal Approximation Capability of Support Vector Machines. Neural Processing Letters 17, 43–53 (2003)

    Article  Google Scholar 

  18. Ishikawa, M.: Structural Learning with Forgetting. Neural Netw. 9, 509–521 (1996)

    Article  Google Scholar 

  19. Nicolelis, M.A.L., Lebedev, M.A.: Principles of Neural Ensemble Physiology Underlying the Operation of Brain-machine Interfaces. Nature Reviews Neuroscience 10, 530–540 (2009)

    Article  Google Scholar 

  20. Simoncelli, E.P., Olshausen, B.A.: Natural Image Statistics and Neural Representation. Annu. Rev. Neurosci. 24, 1193–1216 (2001)

    Article  Google Scholar 

  21. Nishimoto, S., Ishida, T., Ohzawa, I.: Receptive Field Properties of Neurons in the Early Visual Cortex Revealed by Local Spectral Reverse Correlation. J. Neurosci. 26, 3269–3280 (2006)

    Article  Google Scholar 

  22. Fujiwara, Y., Miyawaki, Y., Kamitani, Y.: Estimating Image Bases for Visual Image Reconstruction from Human Brain Activity. In: Advances in Neural Information Processing Systems, vol. 22, pp. 576–584. MIT Press, Cambridge (2009)

    Google Scholar 

  23. Lanckriet, G.R.G., Cristianini, N., Bartlett, P., El Ghaoui, L., Jordan, M.I.: Learning the Kernel Matrix with Semidefinite Programming. J. Mach. Learn. Res. 5, 27–72 (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kurashige, H., Câteau, H. (2011). A Method to Construct Visual Recognition Algorithms on the Basis of Neural Activity Data. In: Lu, BL., Zhang, L., Kwok, J. (eds) Neural Information Processing. ICONIP 2011. Lecture Notes in Computer Science, vol 7064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24965-5_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24965-5_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24964-8

  • Online ISBN: 978-3-642-24965-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics