An Extended TopoART Network for the Stable On-line Learning of Regression Functions

  • Marko Tscherepanow
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7063)


In this paper, a novel on-line regression method is presented. Due to its origins in Adaptive Resonance Theory neural networks, this method is particularly well-suited to problems requiring stable incremental learning. Its performance on five publicly available datasets is shown to be at least comparable to two established off-line methods. Furthermore, it exhibits considerable improvements in comparison to its closest supervised relative Fuzzy ARTMAP.


Regression On-line learning TopoART Adaptive Resonance Theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lee, D.H., Kim, J.J., Lee, J.J.: Online support vector regression based actor-critic method. In: Proceedings of the Annual Conference of the IEEE Industrial Electronics Society, pp. 193–198. IEEE (2010)Google Scholar
  2. 2.
    Tscherepanow, M., Jensen, N., Kummert, F.: An incremental approach to automated protein localisation. BMC Bioinformatics 9(445) (2008)Google Scholar
  3. 3.
    Grossberg, S.: Competitive learning: From interactive activation to adaptive resonance. Cognitive Science 11, 23–63 (1987)CrossRefGoogle Scholar
  4. 4.
    Carpenter, G.A., Grossberg, S., Rosen, D.B.: Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Networks 4, 759–771 (1991)CrossRefGoogle Scholar
  5. 5.
    Tscherepanow, M.: TopoART: A Topology Learning Hierarchical ART Network. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010. LNCS, vol. 6354, pp. 157–167. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Frank, A., Asuncion, A.: UCI machine learning repository (2010),
  7. 7.
    Edwards, A.L.: An Introduction to Linear Regression and Correlation. W. H. Freeman and Company, San Francisco (1976)Google Scholar
  8. 8.
    Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector algorithms. Neural Computation 12, 1207–1245 (2000)CrossRefGoogle Scholar
  9. 9.
    Fausett, L.: Fundamentals of Neural Networks – Architectures, Algorithms, and Applications. Prentice Hall, New Jersey (1994)zbMATHGoogle Scholar
  10. 10.
    Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: Theory and applications. Neurocomputing 70, 489–501 (2006)CrossRefGoogle Scholar
  11. 11.
    Ma, J., Theiler, J., Perkins, S.: Accurate on-line support vector regression. Neural Computation 15, 2683–2703 (2003)CrossRefzbMATHGoogle Scholar
  12. 12.
    Martin, M.: On-line support vector machine regression. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, pp. 173–198. Springer, Heidelberg (2002)Google Scholar
  13. 13.
    Fahlman, S.E., Lebiere, C.: The cascade-correlation learning architecture. In: Neural Information Processing Systems, vol. 2, pp. 524–532. Morgan Kaufmann, San Mateo (1989)Google Scholar
  14. 14.
    Carpenter, G.A., Grossberg, S., Reynolds, J.H.: ARTMAP: Supervised real-time learning and classification of nonstationary data by a self-organizing neural network. Neural Networks 4, 565–588 (1991)CrossRefGoogle Scholar
  15. 15.
    Carpenter, G.A.: Default ARTMAP. In: Proceedings of the International Joint Conference on Neural Networks, vol. 2, pp. 1396–1401. IEEE (2003)Google Scholar
  16. 16.
    Furao, S., Hasegawa, O.: An incremental network for on-line unsupervised classification and topology learning. Neural Networks 19, 90–106 (2006)CrossRefzbMATHGoogle Scholar
  17. 17.
    Yeh, I.C.: Modeling of strength of high performance concrete using artificial neural networks. Cement and Concrete Research 28(12), 1797–1808 (1998)CrossRefGoogle Scholar
  18. 18.
    Yeh, I.C.: Modeling slump flow of concrete using second-order regressions and artificial neural networks. Cement and Concrete Composites 29(6), 474–480 (2007)CrossRefGoogle Scholar
  19. 19.
    Cortez, P., Morais, A.: A data mining approach to predict forest fires using meteorological data. In: Proceedings of the Portuguese Conference on Artificial Intelligence. LNAI, vol. 4874, pp. 512–523. Springer, Berlin (2007)Google Scholar
  20. 20.
    Cortez, P., Cerdeira, A., Almeida, F., Matos, T., Reis, J.: Modeling wine preferences by data mining from physicochemical properties. Decision Support Systems 47(4), 547–553 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marko Tscherepanow
    • 1
  1. 1.Applied InformaticsBielefeld UniversityBielefeldGermany

Personalised recommendations