Fitness Landscape-Based Parameter Tuning Method for Evolutionary Algorithms for Computing Unique Input Output Sequences

  • Jinlong Li
  • Guanzhou Lu
  • Xin Yao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7063)

Abstract

Unique Input Output (UIO) sequences are used in conformance testing of Finite state machines (FSMs). Evolutionary algorithms (EAs) have recently been employed to search UIOs. However, the problem of tuning evolutionary algorithm parameters remains unsolved. In this paper, a number of features of fitness landscapes were computed to characterize the UIO instance, and a set of EA parameter settings were labeled with either ’good’ or ’bad’ for each UIO instance, and then a predictor mapping features of a UIO instance to ’good’ EA parameter settings is trained. For a given UIO instance, we use this predictor to find good EA parameter settings, and the experimental results have shown that the correct rate of predicting ’good’ EA parameters was greater than 93%. Although the experimental study in this paper was carried out on the UIO problem, the paper actually addresses a very important issue, i.e., a systematic and principled method of tuning parameters for search algorithms. This is the first time that a systematic and principled framework has been proposed in Search-Based Software Engineering for parameter tuning, by using machine learning techniques to learn good parameter values.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adenso-Diaz, B., Laguna, M.: Fine-tuning of algorithms using fractional experimental design and local search. Operations Research 54(1), 99–114 (2006)CrossRefMATHGoogle Scholar
  2. 2.
    Birattari, M., Stuzle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation, GECCO 2002, pp. 11–18. Morgan Kaufmann (2002)Google Scholar
  3. 3.
    Cathabard, S., Lehre, P.K., Yao, X.: Non-uniform mutation rates for problems with unknown solution lengths. In: Proceedings of the 11th Workshop Proceedings on Foundations of Genetic Algorithms, FOGA 2011, pp. 173–180. ACM, New York (2011)Google Scholar
  4. 4.
    Derderian, K., Hierons, R.M., Harman, M., Guo, Q.: Automated unique input output sequence generation for conformance testing of fsms. The Computer Journal 49 (2006)Google Scholar
  5. 5.
    Lee, D., Yannakakis, M.: Testing finite-state machines: state identification and verification. IEEE Transactions on computers 43(3), 30–320 (1994)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Guo, Q., Hierons, R., Harman, M., Derderian, K.: Constructing multiple unique input/output sequences using metaheuristic optimisation techniques. IET Software 152(3), 127–140 (2005)Google Scholar
  7. 7.
    Guo, Q., Hierons, R.M., Harman, M., Derderian, K.: Computing Unique Input/Output Sequences Using Genetic Algorithms. In: Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 164–177. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    He, J., Yao, X.: Towards an analytic framework for analysing the computation time of evolutionary algorithms. Artificial Intelligence 145, 59–97 (2003)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Hutter, F., Hoos, H.H., Leyton-brown, K., Sttzle, T.: Paramils: An automatic algorithm configuration framework. Journal of Artificial Intelligence Research 36, 267–306 (2009)MATHGoogle Scholar
  10. 10.
    Lehre, P.K., Yao, X.: Runtime analysis of (1+l) ea on computing unique input output sequences. In: IEEE Congress on Evolutionary Computation, 2007, pp. 1882–1889 (September 2007)Google Scholar
  11. 11.
    Lehre, P.K., Yao, X.: Crossover can be Constructive When Computing Unique Input Output Sequences. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V., Abbass, H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 595–604. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Lehre, P.K., Yao, X.: Runtime analysis of the (1+1) ea on computing unique input output sequences. Information Sciences (2010) (in press)Google Scholar
  13. 13.
    Lindawati, Lau, H.C., Lo, D.: Instance-based parameter tuning via search trajectory similarity clustering (2011)Google Scholar
  14. 14.
    Lu, G., Li, J., Yao, X.: Fitness-probability cloud and a measure of problem hardness for evolutionary algorithms. In: Proceedings of the 11th European Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP 2011, pp. 108–117. Springer, Heidelberg (2011)Google Scholar
  15. 15.
    Maturana, J., Lardeux, F., Saubion, F.: Autonomous operator management for evolutionary algorithms. Journal of Heuristics 16, 881–909 (2010)CrossRefMATHGoogle Scholar
  16. 16.
    Merz, P.: Advanced fitness landscape analysis and the performance of memetic algorithms. Evol. Comput. 12, 303–325 (2004)CrossRefGoogle Scholar
  17. 17.
    Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Satzilla: Portfolio-based algorithm selection for sat. Journal of Artificial Intelligence Research 32, 565–606 (2008)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jinlong Li
    • 1
  • Guanzhou Lu
    • 2
  • Xin Yao
    • 2
  1. 1.Nature Inspired Computation and Applications Laboratory (NICAL), Joint USTC-Birmingham Research Institute in Intelligent Computation and Its Applications, School of Computer Science and TechnologyUniversity of Science and Technology of ChinaHefeiChina
  2. 2.CERCIA, School of Computer ScienceUniversity of BirminghamEdgbastonUK

Personalised recommendations