Advertisement

EEG Classification with BSA Spike Encoding Algorithm and Evolving Probabilistic Spiking Neural Network

  • Nuttapod Nuntalid
  • Kshitij Dhoble
  • Nikola Kasabov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7062)

Abstract

This study investigates the feasibility of Bens Spike Algorithm (BSA) to encode continuous EEG spatio-temporal data into input spike streams for a classification in a spiking neural network classifier. A novel evolving probabilistic spiking neural network reservoir (epSNNr) architecture is used for the purpose of learning and classifying the EEG signals after the BSA transformation. Experiments are conducted with EEG data measuring a cognitive state of a single individual under 4 different stimuli. A comparison is drawn between using traditional machine learning algorithms and using BSA plus epSNNr, when different probabilistic models of neurons are utilised. The comparison demonstrates that: (1) The BSA is a suitable transformation for EEG data into spike trains; (2) The performance of the epSNNr improves when a probabilistic model of a neuron is used, compared to the use of a deterministic LIF model of a neuron; (3) The classification accuracy of the EEG data in an epSNNr depends on the type of the probabilistic neuronal model used. The results suggest that an epSNNr can be optimised in terms of neuronal models used and parameters that would better match the noise and the dynamics of EEG data. Potential applications of the proposed method for BCI and medical studies are briefly discussed.

Keywords

Spatio-Temporal Patterns Electroencephalograms (EEG) Stochastic neuron models evolving probabilistic spiking neural networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tatum, W.: Handbook of EEG interpretation. Demos Medical Publishing (2007)Google Scholar
  2. 2.
    Niedermeyer, E., Da Silva, F.: Electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins (2005)Google Scholar
  3. 3.
    Marcel, S., Millán, J.: Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 743–752 (2007)Google Scholar
  4. 4.
    Palaniappan, R., Mandic, D.: EEG based biometric framework for automatic identity verification. The Journal of VLSI Signal Processing 49(2), 243–250 (2007)CrossRefGoogle Scholar
  5. 5.
    Ghosh-Dastidar, S., Adeli, H.: A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection. Neural Networks 22(10), 1419–1431 (2009)CrossRefGoogle Scholar
  6. 6.
    Buteneers, P., Schrauwen, B., Verstraeten, D., Stroobandt, D.: Real-time epileptic seizure detection on intra-cranial rat data using reservoir computing. In: Advances in Neuro- Information Processing, pp. 56–63 (2009)Google Scholar
  7. 7.
    Schliebs, S., Nuntalid, N., Kasabov, N.: Towards Spatio-Temporal Pattern Recognition Using Evolving Spiking Neural Networks. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds.) ICONIP 2010, Part I. LNCS, vol. 6443, pp. 163–170. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Schrauwen, B., Van Campenhout, J.: BSA, a fast and accurate spike train encoding scheme. In: Proceedings of the International Joint Conference on Neural Networks, vol. 4, pp. 2825–2830. IEEE (2003)Google Scholar
  9. 9.
    Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation 14(11), 2531–2560 (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Goodman, D., Brette, R.: The Brian simulator. Frontiers in Neuroscience 3(2), 192 (2009)CrossRefGoogle Scholar
  11. 11.
    Kasabov, N.: To spike or not to spike: A probabilistic spiking neuron model. Neural Networks 23(1), 16–19 (2010)CrossRefGoogle Scholar
  12. 12.
    Kasabov, N., Schliebs, R., Kojima, H.: Probabilistic Computational Neurogenetic Framework: From Modelling Cognitive Systems to Alzheimer’s Disease. IEEE Transactions on Autonomous Mental Development (2011)Google Scholar
  13. 13.
    Rutishauser, U., Douglas, R., Slotine, J.: Collective Stability of Networks of Winner- Take-All Circuits. Neural Computation, 1–39 (2011)Google Scholar
  14. 14.
    Kasabov, N.: Evolving connectionist systems: the knowledge engineering approach. Springer-Verlag New York Inc. (2007)Google Scholar
  15. 15.
    Schliebs, S., Kasabov, N., Defoin-Platel, M.: On the Probabilistic Optimization of Spiking Neural Networks. International Journal of Neural Systems 20(6), 481–500 (2010)CrossRefGoogle Scholar
  16. 16.
    Indiveri, G., Stefanini, F., Chicca, E.: Spike-based learning with a generalized integrate and fire silicon neuron. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1951–1954. IEEE (2010)Google Scholar
  17. 17.
    Indiveri, G., Chicca, E., Douglas, R.: Artificial cognitive systems: From vlsi networks of spiking neurons to neuromorphic cognition. Cognitive Computation 1(2), 119–127 (2009)CrossRefGoogle Scholar
  18. 18.
    Bellas, F., Duro, R., Faina, A., Souto, D.: Multilevel Darwinist Brain (MDB): Artificial Evolution in a Cognitive Architecture for Real Robots. IEEE Transactions on Autonomous Mental Development 2(4), 340–354 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nuttapod Nuntalid
    • 1
  • Kshitij Dhoble
    • 1
  • Nikola Kasabov
    • 1
    • 2
    • 3
  1. 1.Knowledge Engineering and Discovery Research InstituteAuckland University of TechnologyAucklandNew Zealand
  2. 2.Institute for NeuroinformaticsUniversity of ZurichSwitzerland
  3. 3.ETH ZurichSwitzerland

Personalised recommendations