An Approach to Distance Estimation with Stereo Vision Using Address-Event-Representation

  • M. Domínguez-Morales
  • A. Jimenez-Fernandez
  • R. Paz
  • M. R. López-Torres
  • E. Cerezuela-Escudero
  • A. Linares-Barranco
  • G. Jimenez-Moreno
  • A. Morgado
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7062)

Abstract

Image processing in digital computer systems usually considers the visual information as a sequence of frames. These frames are from cameras that capture reality for a short period of time. They are renewed and transmitted at a rate of 25-30 fps (typical real-time scenario). Digital video processing has to process each frame in order to obtain a result or detect a feature. In stereo vision, existing algorithms used for distance estimation use frames from two digital cameras and process them pixel by pixel to obtain similarities and differences from both frames; after that, depending on the scene and the features extracted, an estimate of the distance of the different objects of the scene is calculated. Spike-based processing is a relatively new approach that implements the processing by manipulating spikes one by one at the time they are transmitted, like a human brain. The mammal nervous system is able to solve much more complex problems, such as visual recognition by manipulating neuron spikes. The spike-based philosophy for visual information processing based on the neuro-inspired Address-Event-Representation (AER) is achieving nowadays very high performances. In this work we propose a two-DVS-retina system, composed of other elements in a chain, which allow us to obtain a distance estimation of the moving objects in a close environment. We will analyze each element of this chain and propose a Multi Hold&Fire algorithm that obtains the differences between both retinas.

Keywords

Stereo vision distance calculation address-event-representation spike retina neuromorphic engineering co-design Hold&Fire FPGA VHDL 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barnard, S.T., Fischler, M.A.: Computational Stereo. Journal ACM CSUR 14(4) (1982)Google Scholar
  2. 2.
    Shepherd, G.M.: The Synaptic Organization of the Brain, 3rd edn. Oxford University Press (1990)Google Scholar
  3. 3.
    Lee, J.: A Simple Speckle Smoothing Algorithm for Synthetic Aperture Radar Images. Man and Cybernetics SMC-13 (1981)Google Scholar
  4. 4.
    Crimmins, T.: Geometric Filter for Speckle Reduction. Applied Optics 24, 1438–1443 (1985)CrossRefGoogle Scholar
  5. 5.
    Linares-Barranco, A., et al.: AER Convolution Processors for FPGA. In: ISCASS (2010)Google Scholar
  6. 6.
    Cope, B., et al.: Implementation of 2D Convolution on FPGA, GPU and CPU. Imperial College Report (2006)Google Scholar
  7. 7.
    Cope, B., et al.: Have GPUs made FPGAs redundant in the field of video processing? In: FPT (2005)Google Scholar
  8. 8.
    Sivilotti, M.: Wiring Considerations in analog VLSI Systems with Application to Field-Programmable Networks. Ph.D. Thesis, Caltech (1991)Google Scholar
  9. 9.
    Berner, R., Delbruck, T., Civit-Balcells, A., Linares-Barranco, A.: A 5 Meps $100 USB2.0 Address-Event Monitor-Sequencer Interface. In: ISCAS, New Orleans, pp. 2451–2454 (2007)Google Scholar
  10. 10.
    Lichtsteiner, P., Posh, C., Delbruck, T.: A 128×128 120dB 15 us Asynchronous Temporal Contrast Vision Sensor. IEEE Journal on Solid-State Circuits 43(2), 566–576 (2008)CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Benosman, R., Devars, J.: Panoramic stereo vision sensor. In: International Conference on Pattern Recognition, ICPR (1998)Google Scholar
  13. 13.
    Benosman, R., et al.: Real time omni-directional stereovision and planes detection. In: Mediterranean Electrotechnical Conference, MELECON (1996)Google Scholar
  14. 14.
    Douret, J., Benosman, R.: A multi-cameras 3D volumetric method for outdoor scenes: a road traffic monitoring application. In: International Conference on Pattern Recognition, ICPR (2004)Google Scholar
  15. 15.
    Dominguez-Morales, M., et al.: Image Matching Algorithms using Address-Event-Representation. In: SIGMAP (2011)Google Scholar
  16. 16.
    Jimenez-Fernandez, A., et al.: Building Blocks for Spike-based Signal Processing. In: IEEE International Joint Conference on Neural Networks, IJCNN (2010)Google Scholar
  17. 17.
    AVNET Virtex-5 FPGA board: http://www.em.avnet.com/drc

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • M. Domínguez-Morales
    • 1
  • A. Jimenez-Fernandez
    • 1
  • R. Paz
    • 1
  • M. R. López-Torres
    • 1
  • E. Cerezuela-Escudero
    • 1
  • A. Linares-Barranco
    • 1
  • G. Jimenez-Moreno
    • 1
  • A. Morgado
    • 2
  1. 1.Robotic and Technology of Computers LabUniversity of SevilleSpain
  2. 2.Electronic Technology DepartmentUniversity of CadizSpain

Personalised recommendations