Advertisement

A Saliency Detection Model Based on Local and Global Kernel Density Estimation

  • Huiyun Jing
  • Xin He
  • Qi Han
  • Xiamu Niu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7062)

Abstract

Visual saliency is an important and indispensable part of visual attention. We present a novel saliency detection model using Bayes’ theorem. The proposed model measures the pixel saliency by combining local kernel density estimation of features in center-surround region and global density estimation of features in the entire image. Based on the model, a saliency detection method is presented that extracts the intensity, color and local steering kernel features and employs feature level fusion method to obtain the integrated feature as the corresponding pixel feature. Experimental results show that our model outperforms the current state-of-the-art models on human visual fixation data.

Keywords

Visual attention Saliency map Bayes’ theorem Kernel density estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Papageorgiou, C., Poggio, T.: A trainable system for object detection. International Journal of Computer Vision 38, 15–33 (2000)CrossRefMATHGoogle Scholar
  2. 2.
    Rother, C., Bordeaux, L., Hamadi, Y., Blake, A.: AutoCollage. ACM Transactions on Graphics 25, 847–852 (2006)CrossRefGoogle Scholar
  3. 3.
    Itti, L.: Automatic foveation for video compressing using a neurobiological model of visual attention. IEEE Transactions on Image Processing 13, 1304–1318 (2004)CrossRefGoogle Scholar
  4. 4.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 1254–1259 (1998)CrossRefGoogle Scholar
  5. 5.
    Bruce, N.D.B., Tsotsos, J.K.: Saliency based on information maximization. In: Advances in Neural Information Processing Systems, vol. 18, pp. 155–162 (2006)Google Scholar
  6. 6.
    Zhang, L., Tong, M.H., Marks, T.K., Shan, H., Cottrell, G.W.: SUN: a bayesian framework for saliency using natural statistics. Journal of Vision 8, 32–51 (2008)CrossRefGoogle Scholar
  7. 7.
    Gopalakrishnan, V., Hu, Y.Q., Rajan, D.: Random Walks on Graphs to Model Saliency in Images. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1698–1750. IEEE Press, New York (2009)CrossRefGoogle Scholar
  8. 8.
    Judd, T., Ehinger, K., Durand, F., Torralba, A.: Learning to predict where humans look. In: 12th International Conference on Computer Vision, pp. 2106–2113. IEEE Press, New York (2009)Google Scholar
  9. 9.
    Murray, N., Vanrell, M., Otazu, X., Parraga, C.A.: Saliency Estimation Using a Non-Parametric Low-Level Vision Model. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition. IEEE Press, New York (2011)Google Scholar
  10. 10.
    Gao, D., Mahadevan, V., Vasconcelos, N.: On the plausibility of the discriminant center-surround hypothesis for visual saliency. Journal of Vision 8, 13–31 (2008)CrossRefGoogle Scholar
  11. 11.
    Seo, H.J., Milanfar, P.: Static and space-time visual saliency detection by self-resemblance. Journal of Vision 9, 15–41 (2009)CrossRefGoogle Scholar
  12. 12.
    Takeda, H., Farsiu, S., Milanfar, P.: Kernel regression for image processing and reconstruction. IEEE Transactions on Image Processing 16, 349–366 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Takeda, H., Milanfar, P., Protter, M., Elad, M.: Super-Resolution Without Explicit Subpixel Motion Estimation. IEEE Transactions on Image Processing 18, 1958–1975 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Seo, H.J., Milanfar, P.: Training-free, generic object detection using locally adaptive regression kernels. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 1688–1704 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Huiyun Jing
    • 1
  • Xin He
    • 1
  • Qi Han
    • 1
  • Xiamu Niu
    • 1
  1. 1.Department of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina

Personalised recommendations