Honoring Carolyn Talcott’s Contributions to Science

  • Sylvan Pinsky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7000)

Abstract

This paper describes both Carolyn Talcott’s technical and leadership contributions to formal methods, cryptographic protocol analysis, and systems biology. Carolyn has played a vitally important leadership role in protocol analysis through her signicant research and bringing together leading members of the protocol analysis community. Her efforts have resulted in a unified, cohesive, and flexible foundation for the interoperation of maturing tools and techniques for designing and evaluating a wide range of protocols. As the leader of the Symbolic Systems Technology Group at SRI she has been a visionary manager with exceptionally strong technical skills who has guided, advised and mentored numerous scientists in the use of formal methods and other computational tools for modeling or solving diverse biological problems in cancer biology, signal transduction research, neuroscience, and infectious disease research.

Keywords

Formal Method Protocol Analysis Protocol eXchange Cryptographic Protocol National Security Agency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Needham, R., Schroeder, M.: Using encryption for authentication in large networks of computers. Communications of the ACM (1978)Google Scholar
  2. 2.
    Dolev, D., Yao, A.C.: On the Secruity of Public Key Protocols, STAN-CS-81-854 (1981)Google Scholar
  3. 3.
    Millen, J.: The Interrogator: A Tool for Cryptographic Protocol Security. In: Proceedings 1884 Symposium on Security and Privacy. IEEE Computer Security Society, Los Alamitos (1984)Google Scholar
  4. 4.
    Meadows, C.: The NRL Protocol Analyzer: An overview. Journal of Logic Programming (1996)Google Scholar
  5. 5.
    Kemmerer, R.: Analyzing Encryption Protocols Using Formal Verification Techniques. IEEE Journal Selected Areas in Communication 7(4) (1989)Google Scholar
  6. 6.
    Meadows, C.: Applying formal methods to the analysis of a key management protocol. The Journal of Computer Security 1(1) (1992)Google Scholar
  7. 7.
    Abadi, M., Needham, R.: Prudent engineering practice for cryptographic protocols. IEEE Transactions on Software Engineering 22(1) (1996)Google Scholar
  8. 8.
    Denker, G., Megeguer, J., Talcott, C.: Protocol Specification and Analysis in Maude. In: Workshop on Formal Methods and Security Protocols (1998)Google Scholar
  9. 9.
    Denker, G., García-Luna-Aceves, J.J., Megeguer, J., Ölvezky, P., Raju, J., Smith, B., Talcott, C.: Specifying a Reliable Broadcasting Protocol in Maude. In: Workshop on Formal Methods and Security Protocols (1998)Google Scholar
  10. 10.
    Denker, G., Megeguer, J., Talcott, C.: Formal Specification and Analysis of Active Networks and Communication Protocols: The Maude Experience. In: DARPA Information Survivability Conference and Exposition (2000)Google Scholar
  11. 11.
    Ölvezky, P., Megeguer, J., Talcott, C.: Specification and analysis of the AER/NCA active network protocol suite in Real-Time Maude. In: Formal Methods in System Design (2006)Google Scholar
  12. 12.
    Mason, I., Talcott, C.: Simple Network Protocol Simulation within Maude. In: Third International Workshop in Rewriting Logic and Its Applications. Electronic Notes in Theoretical Computer Science (2000)Google Scholar
  13. 13.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Megeguer, J., Talcott, C.: All About Maude - A High-Performance Logical Framework. How to Specify, Program and Verify Systems in Rewriting Logic. LNCS, vol. 4350. Springer, Heidelberg (2007)Google Scholar
  14. 14.
    Fábrega, J.T., Herzog, J., Guttman, J.: Strand Spaces: Proving Security Protocols Correct. Journal of Computer Security 7 (1999)Google Scholar
  15. 15.
    Guttman, J., Fábrega, J.T.: Authentication Tests and the Structure of Bundles. Theoretical Computer Science (2001)Google Scholar
  16. 16.
    Guttman, J., Fábrega, J.T.: The sizes of skeletons: security goals are decidable, MITRE Technical Report 05B09 (2005)Google Scholar
  17. 17.
    Lowe, G.: Breaking and Fixing the Needham-Schroeder Public-Key Protocol using FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055. Springer, Heidelberg (1996)Google Scholar
  18. 18.
    Rushby, J.: The Needham-Schroeder Protocol in SAL, Computer Science Laboratory, SRI International (2005)Google Scholar
  19. 19.
    Cervesato, I., Durgin, N., Lincoln, P., Mitchell, J., Scedrov, A.: A comparison between Strand Spaces and Multiset Rewriting for Security Protocol Analysis. In: Software Security - Theories and Systems - ISSS (2002)Google Scholar
  20. 20.
    Anlauff, M., Pavlovic, D., Waldinger, R., Westfold, S.: Proving Authentication Properties in the Protocol Derivation Assistant, Kestrel Institute (2006)Google Scholar
  21. 21.
    Owre, S., Shankar, N., Rushby, J.: PVS: A Prototype Verification System. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992)Google Scholar
  22. 22.
    Talcott, C.: A Maude-PVS tool for Strand Spaces, Protocol eXchange (2004)Google Scholar
  23. 23.
    Talcott, C., Owre, S.: CPSA + Maude + PDA + PVS, Protocol eXchange (2005)Google Scholar
  24. 24.
    Talcott, C.: S-expressions & Maude + PVS, Protocol eXchange (2006)Google Scholar
  25. 25.
    Talcott, C.: TOOLIP Semantics & TOOLIP - Maude NPA, Protocol eXchange (2007)Google Scholar
  26. 26.
    Owre, S.: Maude2PVS, Protocol eXchange (2007)Google Scholar
  27. 27.
    Talcott, C.: TOOLIP Semantics & Interoperation, Protocol eXchange (2008)Google Scholar
  28. 28.
    Talcott, C.: Pathway Logic. In: Bernardo, M., Degano, P., Tennenholtz, M. (eds.) SFM 2008. LNCS, vol. 5016, pp. 21–53. Springer, Heidelberg (2008)Google Scholar
  29. 29.
    Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Talcott, C.: Pathway Logic: Executable Models of Biological Networks. In: Fourth International Workshop in Rewriting Logic and Its Applications. Electronic Notes in Theoretical Computer Science (2004)Google Scholar
  30. 30.
    Talcott, C., Eker, S., Knapp, M., Lincoln, P., Laderoute, K.: Pathway Logic Modeling of Protein Functional Domains in Signal Transduction. In: Proceedings of the Pacific Symposium on Biocomputing (2004)Google Scholar
  31. 31.
    Edelstein-Keshet, L.: Mathematical Models in Biology. McGraw-Hill, New York (1988)Google Scholar
  32. 32.
    Sontag, E.: Lecture Notes on Mathematical Systems Biology, Rutgers University (2009), http://www.math.rutgers.edu/~sontag/FTP/_DIR/systems_biology_notes.pdf
  33. 33.
    Izhikevich, E.: Which Model to Use for Cortical Spiking Neurons? IEEE Transactions on Neural Networks 15(5) (2004)Google Scholar
  34. 34.
    Tiwari, A., Talcott, C.: Analyzing a Discrete Model of Aplysia Central Pattern Generator. Computational Methods in Systems Biology (2008)Google Scholar
  35. 35.
    Poggio, A.: New Insights for Network Science: Discrete Mathematical Models of Biological Systems, Computer Science Laboratory, SRI International: ECU 09-416R (2010)Google Scholar
  36. 36.
    Colizza, V., Barrat, A., Barthélemy, M., Vespignani, A.: The role of the airline transportation network in the prediction and predictability of global epidemics. Proceedings of the National Academy of Sciences 103(7) (2006)Google Scholar
  37. 37.
    Grais, R., Ellis, J.: Modeling the spread of annual Influenza epidemics in the U.S.: the potential role of air travel. Health Care Management Science 7 (2004)Google Scholar
  38. 38.
    Barrat, A., Barthélemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture of complex weighted networks. Proceedings of the National Academy of Sciences 101(11) (2006)Google Scholar
  39. 39.
    Tsallis, C.: Is the entropy Sq extensive or nonextensive? Astrophysics Space Sciences 305 (2006)Google Scholar
  40. 40.
    Alberts, B.: The Cell as a Collection of Protein Machines: Preparing the Next Generation of Molecular Biologists. Cell 92 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sylvan Pinsky
    • 1
  1. 1.SRI InternationalMenlo ParkUSA

Personalised recommendations