Towards a Maude Formal Environment

  • Francisco Durán
  • Camilo Rocha
  • José María Álvarez

Abstract

Maude is a declarative and reflective language based on rewriting logic in which computation corresponds to efficient deduction by rewriting. Because of its reflective capabilities, Maude has been useful as a metatool in the development of formal analysis tools for checking specific properties of Maude specifications. This includes tools for checking termination, confluence, and inductive properties of rewrite theories. Nevertheless, most of these tools have been designed to work in isolation, making it difficult, for instance, to exchange data between them and inconvenient to switch between their environments. This paper presents the Maude Formal Environment (MFE), an executable formal specification in Maude within which a user can interact with tools to mechanically verify properties of Maude specifications. One important aspect of this work is that the MFE has been designed to be easily extended with tools having highly heterogeneous designs whilst creating synergy among them. As a proof of concept, we report on the integration of five commonly used formal analysis tools for Maude specifications into MFE and illustrate their interoperability with an example.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    User interfaces for theorem provers, http://www.informatik.uni-bremen.de/uitp/
  2. 2.
    Aspinall, D., Lüth, C.: Special issue on user interfaces in theorem proving. Journal of Automated Reasoning 39(2) (2007)Google Scholar
  3. 3.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Quesada, J.: Maude: Specification and programming in rewriting logic. Theoretical Computer Science 285, 187–243 (2002)Google Scholar
  4. 4.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude - A High-Performance Logical Framework: How to Specify, Program, and Verify Systems in Rewriting Logic. LNCS, vol. 4350. Springer, Heidelberg (2007)Google Scholar
  5. 5.
    Clavel, M., Durán, F., Eker, S., Meseguer, J., Stehr, M.O.: Maude as a formal meta-tool. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1709, pp. 1684–1703. Springer, Heidelberg (1999)Google Scholar
  6. 6.
    Clavel, M., Durán, F., Hendrix, J., Lucas, S., Meseguer, J., Ölveczky, P.: The Maude formal tool environment. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 173–178. Springer, Heidelberg (2007)Google Scholar
  7. 7.
    Clavel, M., Palomino, M., Riesco, A.: Introducing the ITP tool: a tutorial. Journal of Universal Computer Science 12(11), 1618–1650 (2006)Google Scholar
  8. 8.
    Durán, F., Lucas, S., Bevilacqua, V.: MTT: The Maude termination tool (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 313–319. Springer, Heidelberg (2008)Google Scholar
  9. 9.
    Durán, F., Lucas, S., Meseguer, J.: Methods for proving termination of rewriting-based programming languages by transformation. Electronic Notes in Theoretical Computer Science 248, 93–113 (2009)Google Scholar
  10. 10.
    Durán, F., Lucas, S., Meseguer, J.: Termination modulo combinations of equational theories. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp. 246–262. Springer, Heidelberg (2009)Google Scholar
  11. 11.
    Durán, F., Meseguer, J.: A Church-Rosser checker tool for conditional order-sorted equational Maude specifications. In: Ölveczky, P. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 69–85. Springer, Heidelberg (2010)Google Scholar
  12. 12.
    Durán, F., Meseguer, J.: A Maude coherence checker tool for conditional order-sorted rewrite theories. In: Ölveczky, P. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 86–103. Springer, Heidelberg (2010)Google Scholar
  13. 13.
    Durán, F., Meseguer, J.: Maude’s module algebra. Science of Computer Programming 66(2), 125–153 (2007)Google Scholar
  14. 14.
    Durán, F., Meseguer, J.: On the Church-Rosser and coherence properties of conditional order-sorted rewrite theories. Journal of Logic and Algebraic Programming (submitted for publication, 2011)Google Scholar
  15. 15.
    Durán, F., Ölveczky, P.C.: A guide to extending Full Maude illustrated with the implementation of Real-Time Maude. Electronic Notes in Theoretical Computer Science 238(3), 83–102 (2009)Google Scholar
  16. 16.
    Franssen, M., van den Brand, M.: Design of a proof repository architecture. In: Proceedings of the 1st Workshop on Modules and Libraries for Proof Assistants (MLPA 2009), pp. 19–23. ACM (2009)Google Scholar
  17. 17.
    Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termination proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)Google Scholar
  18. 18.
    Hemer, D., Long, G., Strooper, P.: Plug-in proof support for formal development environments. In: Proceedings of the 2005 Australasian Symposium on Theory of Computing (CATS 2005), pp. 69–79. Australian Computer Society, Inc. (2005)Google Scholar
  19. 19.
    Hendrix, J.: Decision Procedures for Equationally Based Reasoning. Ph.D. thesis, University of Illinois at Urbana-Champaign (2008)Google Scholar
  20. 20.
    Hendrix, J., Clavel, M., Bevilacqua, V.: A sufficient completeness reasoning tool for partial specifications. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 165–174. Springer, Heidelberg (2005)Google Scholar
  21. 21.
    Hendrix, J., Meseguer, J., Ohsaki, H.: A sufficient completeness checker for linear order-sorted specifications modulo axioms. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 151–155. Springer, Heidelberg (2006)Google Scholar
  22. 22.
    Lucas, S.: MU-TERM: A tool for proving termination of context-sensitive rewriting. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 200–209. Springer, Heidelberg (2004)Google Scholar
  23. 23.
    Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set, Hets. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg (2007)Google Scholar
  24. 24.
    Rocha, C., Meseguer, J.: Constructors, sufficient completeness and deadlock freedom of rewrite theories. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 594–609. Springer, Heidelberg (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Francisco Durán
    • 1
  • Camilo Rocha
    • 2
  • José María Álvarez
    • 1
  1. 1.Universidad de MálagaSpain
  2. 2.University of Illinois at Urbana-ChampaignUSA

Personalised recommendations