Survey: Weighted Extended Top-Down Tree Transducers Part III — Composition

  • Aurélie Lagoutte
  • Andreas Maletti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7020)


In this survey (functional) compositions of weighted tree transformations computable by weighted extended top-down tree transducers are investigated. The existing results in the literature are explained and illustrated. It is argued, why certain compositions are not possible in the general case, and 3 informed conjectures provide an insight into potentially 3 new composition results that extend and complement the existing results. In particular, if all were true, then the beautiful symmetry in the composition results for weighted top-down and bottom-up tree transducers would be recovered.


weighted tree transducer top-down tree transducer composition deletion copying 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexandrakis, A., Bozapalidis, S.: Weighted grammars and Kleene’s theorem. Inf. Process. Lett. 24(1), 1–4 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arnold, A., Dauchet, M.: Bi-transductions de forêts. In: Michaelson, S., Milner, R. (eds.) ICALP 1976, pp. 74–86. Edinburgh University Press, Edinburgh (1976)Google Scholar
  3. 3.
    Arnold, A., Dauchet, M.: Morphismes et bimorphismes d’arbres. Theoret. Comput. Sci. 20(4), 33–93 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)CrossRefzbMATHGoogle Scholar
  5. 5.
    Baker, B.S.: Composition of top-down and bottom-up tree transductions. Inform. and Control 41(2), 186–213 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Berstel, J., Reutenauer, C.: Recognizable formal power series on trees. Theoret. Comput. Sci. 18(2), 115–148 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Borchardt, B.: The Theory of Recognizable Tree Series. Ph.D. thesis, Technische Universität Dresden (2005)Google Scholar
  8. 8.
    Borchardt, B., Vogler, H.: Determinization of finite state weighted tree automata. J. Autom. Lang. Combin. 8(3), 417–463 (2003)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Bozapalidis, S., Louscou-Bozapalidou, O.: The rank of a formal tree power series. Theoret. Comput. Sci. 27(1-2), 211–215 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Löding, C., Tison, S., Tommasi, M.: Tree automata techniques and applications (2007),
  11. 11.
    Dauchet, M.: Transductions inversibles de forêts. Thèse 3ème cycle, Université de Lille (1975)Google Scholar
  12. 12.
    Engelfriet, J.: Bottom-up and top-down tree transformations: A comparison. Math. Systems Theory 9(3), 198–231 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Engelfriet, J.: Top-down tree transducers with regular look-ahead. Math. Systems Theory 10(1), 289–303 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Engelfriet, J., Fülöp, Z., Vogler, H.: Bottom-up and top-down tree series transformations. J. Autom. Lang. Combin. 7(1), 11–70 (2002)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Engelfriet, J., Lilin, E., Maletti, A.: Extended multi bottom-up tree transducers. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 289–300. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Engelfriet, J., Lilin, E., Maletti, A.: Composition and decomposition of extended multi bottom-up tree transducers. Acta Inform. 46(8), 561–590 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ésik, Z., Kuich, W.: Formal tree series. J. Autom. Lang. Combin. 8(2), 219–285 (2003)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Fülöp, Z., Gazdag, Z., Vogler, H.: Hierarchies of tree series transformations. Theoret. Comput. Sci. 314(3), 387–429 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Fülöp, Z., Vogler, H.: Tree series transformations that respect copying. Theory Comput. Systems 36(3), 247–293 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Fülöp, Z., Vogler, H.: Weighted tree automata and tree transducers. In: Droste, M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata, ch. 9, pp. 313–403. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)zbMATHGoogle Scholar
  22. 22.
    Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, ch. 1, pp. 1–68. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  23. 23.
    Golan, J.S.: Semirings and their Applications. Kluwer Academic, Dordrecht (1999)CrossRefzbMATHGoogle Scholar
  24. 24.
    Graehl, J., Knight, K., May, J.: Training tree transducers. Comput. Linguist. 34(3), 391–427 (2008)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Hebisch, U., Weinert, H.J.: Semirings — Algebraic Theory and Applications in Computer Science. Algebra, vol. 5. World Scientific, Singapore (1998)CrossRefzbMATHGoogle Scholar
  26. 26.
    Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural language processing. In: Gelbukh, A.F. (ed.) CICLing 2005. LNCS, vol. 3406, pp. 1–24. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    Koehn, P.: Statistical Machine Translation. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
  28. 28.
    Koehn, P., Och, F.J., Marcu, D.: Statistical phrase-based translation. In: NAACL 2003, pp. 48–54. Association for Computational Linguistics (2003)Google Scholar
  29. 29.
    Kühnemann, A.: Benefits of tree transducers for optimizing functional programs. In: Arvind, V., Sarukkai, S. (eds.) FST TCS 1998. LNCS, vol. 1530, pp. 146–158. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  30. 30.
    Kuich, W.: Formal power series over trees. In: Bozapalidis, S. (ed.) DLT 1997, pp. 61–101. Aristotle University of Thessaloniki (1998)Google Scholar
  31. 31.
    Kuich, W.: Full abstract families of tree series I. In: Karhumäki, J., Maurer, H.A., Paun, G., Rozenberg, G. (eds.) Jewels are Forever, pp. 145–156. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  32. 32.
    Kuich, W.: Tree transducers and formal tree series. Acta Cybernet. 14(1), 135–149 (1999)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Maletti, A.: Compositions of tree series transformations. Theoret. Comput. Sci. 366(3), 248–271 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Maletti, A.: The Power of Tree Series Transducers. Ph.D. thesis, Technische Universität Dresden (2006)Google Scholar
  35. 35.
    Maletti, A.: Compositions of extended top-down tree transducers. Inform. and Comput. 206(9-10), 1187–1196 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Maletti, A.: Survey: Weighted extended top-down tree transducers — Part I: Basics and expressive power. Acta Cybernet (2011), preprint available at:
  37. 37.
    Maletti, A.: Survey: Weighted extended top-down tree transducers — Part II: Application in machine translation. Fund. Inform (2011)Google Scholar
  38. 38.
    Maletti, A., Graehl, J., Hopkins, M., Knight, K.: The power of extended top-down tree transducers. SIAM J. Comput. 39(2), 410–430 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Maletti, A., Vogler, H.: Compositions of top-down tree transducers with ε-rules. In: Yli-Jyrä, A., Kornai, A., Sakarovitch, J., Watson, B. (eds.) FSMNLP 2009. LNCS (LNAI), vol. 6062, pp. 69–80. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  40. 40.
    May, J., Knight, K., Vogler, H.: Efficient inference through cascades of weighted tree transducers. In: ACL 2010, pp. 1058–1066. Association for Computational Linguistics (2010)Google Scholar
  41. 41.
    Rounds, W.C.: Mappings and grammars on trees. Math. Systems Theory 4(3), 257–287 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Thatcher, J.W.: Generalized2 sequential machine maps. J. Comput. System Sci. 4(4), 339–367 (1970)CrossRefzbMATHGoogle Scholar
  43. 43.
    Thatcher, J.W.: Tree automata: An informal survey. In: Aho, A.V. (ed.) Currents in the Theory of Computing, ch. 4, pp. 143–172. Prentice Hall, Englewood Cliffs (1973)Google Scholar
  44. 44.
    Wang, H.: On characters of semirings. Houston J. Math. 23(3), 391–405 (1997)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Wang, H.: On rational series and rational languages. Theoret. Comput. Sci. 205(1-2), 329–336 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Yamada, K., Knight, K.: A decoder for syntax-based statistical MT. In: ACL 2002, pp. 303–310. Association for Computational Linguistics (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Aurélie Lagoutte
    • 1
  • Andreas Maletti
    • 2
  1. 1.Département InformatiqueÉcole normale supérieure de CachanCachan cedexFrance
  2. 2.Institute for Natural Language ProcessingUniversität StuttgartStuttgartGermany

Personalised recommendations