MASHA – Low Cost Authentication with a New Stream Cipher

  • Shinsaku Kiyomoto
  • Matt Henricksen
  • Wun-She Yap
  • Yuto Nakano
  • Kazuhide Fukushima
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7001)

Abstract

In this paper, we propose a new high-speed stream cipher called MASHA (Message Authenticated Streaming-encryption Heterogeneous Algorithm) with integrated MAC functionality. It simultaneously encrypts plaintext and produces an authentication tag that assures data and origin integrity. On the Intel Core 2, its speed is 11.92 cycles/byte, which is faster than the time it takes to encrypt and authenticate using well-known primitives SNOW 2.0 and SHA-256 in conjunction. We show that MASHA is secure against all known attacks.

Keywords

Finite State Machine Block Cipher Advance Encryption Standard Stream Cipher Message Authentication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agren, M., Hell, M., Johansson, T., Meier, W.: A new version of grain-128 with authentication. In: Proc. of SKEW 2011 (2011)Google Scholar
  2. 2.
    Babbage, S., de Canniere, C., Canteaut, A., Cid, C., Gilbert, H., Johansson, T., Paar, C., Parker, M., Preneel, B., Rijmen, V., Robshaw, M., Wu, H.: Short report on the end of the second phase. In: ECRYPT (2007), eStream Project http://www.ecrypt.eu.org/stream/PhaseIIreport.pdf
  3. 3.
    Billet, O., Gilbert, H.: Resistance of SNOW 2.0 against algebraic attacks. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 19–28. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Courtois, N., Debraize, B.: Algebraic description and simultaneous linear approximations of addition modulo 2n. In: SASC 2008, pp. 69–86 (2008)Google Scholar
  5. 5.
    Coutois, N.: Algebraic attacks on combiners with memory and several outputs. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 3–20. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Information Security and Cryptography, Texts and Monographs (2002)Google Scholar
  7. 7.
    Ekdahl, P., Johansson, T.: A new version of the stream cipher SNOW. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 47–61. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Engels, D., Saarinen, M.-J.O., Smith, E.M.: The Hummingbird-2 Lightweight Authenticated Encryption Algorithm (2011), http://eprint.iacr.org/2011/126.pdf
  9. 9.
    ECRYPT eSTREAM. the ECRYPT stream cipher project, http://www.ecrypt.eu.org/stream/
  10. 10.
    Hawkes, P., Paddon, M., Rose, G.: The Mundja streaming MAC. IACR ePrint Archive, 2004/271 (2004)Google Scholar
  11. 11.
    Hawkes, P., Paddon, M., Rose, G., de Vries, M.W.: Primitive specification for NLSv2. eSTREAM report, 2006/036 (2006)Google Scholar
  12. 12.
    Hell, M., Johansson, T., Maximov, A., Meier, W.: The Grain family of stream ciphers. In: Robshaw, M.J.B., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 179–190. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Hong, J., Sarkar, P.: Rediscovery of time memory tradeoffs. IACR ePrint Archive, Report 2005/090 (2005)Google Scholar
  14. 14.
    Kiyomoto, S., Tanaka, T., Sakurai, K.: K2: A stream cipher algorithm using dynamic feedback control. In: SECRYPT 2007, International Conference on Security and Cryptography, Barcelona, Spain (July 28-31, 2007)Google Scholar
  15. 15.
    Lim, S.Y., Pu, C.C., Lim, H.T., Lee, H.J.: Dragon-MAC: Securing wireless sensor networks with authenticated encryption. IACR ePrint Archive, 2007/024 (2007)Google Scholar
  16. 16.
    Nyberg, K., Wallén, J.: Improved linear distinguishers for SNOW 2.0. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 144–162. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    National Institute of Standards and Technology. Random number generation and testing, NIST Test Suite (2000), http://csrc.nist.gov/groups/ST/toolkit/rng/index.html
  18. 18.
    O’Neil, S., Gittins, B., Landman, H.: VEST - hardware-dedicated stream ciphers. eSTREAM report, 2005/032 (2005)Google Scholar
  19. 19.
    Pornin, T.: Comparative performance review of most of the sha-3 second-round candidates. In: Proc. of The Second SHA-3 Candidate Conference (2010)Google Scholar
  20. 20.
    Robshaw, M., Billet, O. (eds.): New Stream Cipher Designs: The eSTREAM Finalists. LNCS, vol. 4986. Springer, Heidelberg (2008)MATHGoogle Scholar
  21. 21.
    Rogaway, P., Bellare, M., Black, J.: OCB: A block-cipher mode of operation for efficient authenticated encryption. ACM Transactions on Information and System Security (TISSEC) 6(3), 365–403 (2003)CrossRefGoogle Scholar
  22. 22.
    Whiting, D., Schneier, B., Lucks, S., Muller, F.: Phelix - fast encryption and authentication in a single cryptographic primitive. eSTREAM report, 2005/020 (2005)Google Scholar
  23. 23.
    Wu, H., Preneel, B.: Differential-linear attacks against the stream cipher Phelix. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 87–100. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Shinsaku Kiyomoto
    • 1
  • Matt Henricksen
    • 2
  • Wun-She Yap
    • 2
  • Yuto Nakano
    • 1
  • Kazuhide Fukushima
    • 1
  1. 1.KDDI R & D Laboratories Inc.Fujimino-shiJapan
  2. 2.Institute for Infocomm ResearchConnexis (South Tower)Singapore

Personalised recommendations