An Entailment-Based Question Answering System over Semantic Web Data

  • Shiyan Ou
  • Zhenyuan Zhu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7008)


This paper reports a novel knowledge-based Question Answering (QA) method with the use of Semantic Web technologies and textual entailment recognition. Different from most of ontology-driven QA methods, this method does not perform deep question analysis to transform a natural language question into an ontology-compliant query for answer retrieval. Instead, it performs textual entailment recognition to discover the question template entailed by a user question from the whole machine-generated set and then takes the associated SPARQL query template to produce the complete query for retrieving the answers from the Semantic Web data that subscribe to the same ontology. An evaluation was carried out to assess the accuracy of the QA method, and the results revealed that the generated question templates can cover almost all the user questions and 65.6% of the user questions can be correctly answered with the support of a semantic entailment engine.


Question Answering Semantic Web Textual Entailment Ontology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mollá, D., Vicedo, J.: Question answering in restricted domains: An overview. Computational Linguistics 33(1), 41–61 (2007)CrossRefGoogle Scholar
  2. 2.
    Dagan, I., Glickman, O., Magnini, B.: The PASCAL Recognising Textual Entailment Challenge. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds.) MLCW 2005. LNCS (LNAI), vol. 3944, pp. 177–190. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Kouylekov, M., Negri, M., Magnini, B., Coppola, B.: Towards entailment-based question answering: ITC-irst at CLEF 2006. In: Peters, C., Clough, P., Gey, F.C., Karlgren, J., Magnini, B., Oard, D.W., de Rijke, M., Stempfhuber, M. (eds.) CLEF 2006. LNCS, vol. 4730, pp. 526–536. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Androutsopoulos, I., Ritchie, G.D., Thanisch, P.: Natural language interfaces to databases—an introduction. Natural Language Engineering 1(1), 29–81 (1995)CrossRefGoogle Scholar
  5. 5.
    Lopez, V., Uren, V., Sabou, M., Motta, E.: Is Question Answering fit for the Semantic Web? a Survey. Semantic Web–Interoperability, Usability, Applicability (in press, 2011)Google Scholar
  6. 6.
    Atzeni, P., Basili, R., Hansen, D.H., Missier, P., Paggio, P., Pazienza, M.T., Zanzotto, F.M.: Ontology-based Question Answering in a Federation of University Sites: the MOSES Case Study. In: Meziane, F., Métais, E. (eds.) NLDB 2004. LNCS, vol. 3136, pp. 413–420. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Lopez, V., et al.: AquaLog: An ontology-driven Question Answering System for organizational Semantic intranets. Journal of Web Semantics 5(2), 72–105 (2007)CrossRefGoogle Scholar
  8. 8.
    Lopez, V., Nikolov, A., Sabou, M., Uren, V., Motta, E., d’Aquin, M.: Scaling up Question-Answering to Linked Data. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS, vol. 6317, pp. 193–210. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Tartir, S., Arpinar, I.B.: Question Answering in Linked Data for Scientific Exploration. In: 2nd Annual Web Science Conference (2010)Google Scholar
  10. 10.
    Ou, S., et al.: Development & Alignment of a Domain-Specific Ontology for Question Answering. In: 6th International Conference on Language Recourses and Evaluation, ELRA (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Shiyan Ou
    • 1
  • Zhenyuan Zhu
    • 1
  1. 1.Department of Information ManagementNanjing UniversityChina

Personalised recommendations