Creating a Handwriting Recognition Corpus for Bushman Languages

  • Kyle Williams
  • Hussein Suleman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7008)


Handwriting recognition systems rely on the existence of a corpus for training recognition models and evaluating accuracy. Creating a handwriting recognition corpus for the Bushman languages of southern Africa is difficult due to the complexities of the script used to represent them and the fact that this script cannot be represented using Unicode. To solve this problem, a semi-automatic Web-based tool was developed to segment, capture and encode the Bushman text. A case study demonstrated how the tool could be used to create a Bushman handwriting corpus with few errors.


Corpus creation transcription digital libraries 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Suleman, H.: Digital libraries without databases: The Bleek and Lloyd collection. In: Kovács, L., Fuhr, N., Meghini, C. (eds.) ECDL 2007. LNCS, vol. 4675, pp. 392–403. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Marti, U., Bunke, H.: A full English sentence database for off-line handwriting recognition. In: Proceedings of the Fifth International Conference on Document Analysis and Recognition, pp. 705–708. IEEE, Washington, DC (1999)Google Scholar
  3. 3.
    Rath, T.M., Manmatha, R.: Word spotting for historical documents. Int. J. Doc. Anal. Recognit. 9, 139–152 (2007)CrossRefGoogle Scholar
  4. 4.
    Makridis, M., Nikolaou, N., Gatos, B.: An efficient word segmentation technique for historical and degraded machine-printed documents. In: Proceedings of the Ninth International Conference on Document Analysis and Recognition, pp. 178–182. IEEE, Washington, DC (2007)Google Scholar
  5. 5.
    Al-Ma’adeed, S., Elliman, D., Higgins, C.A.: A data base for arabic handwritten text recognition research. In: Proceedings of the Eighth International Workshop on Frontiers in Handwriting Recognition, pp. 485–489. IEEE, Washington, DC (2002)CrossRefGoogle Scholar
  6. 6.
    Fischer, A., Indermühle, E., Bunke, H., Viehhauser, G., Stolz, M.: Ground truth creation for handwriting recognition in historical documents. In: Proceedings of the 9th IAPR International Workshop on Document Analysis Systems, pp. 3–10. ACM, New York (2010)CrossRefGoogle Scholar
  7. 7.
    Surowiecki, J.: The wisdom of crowds: why the many are smarter than the few. Abacus (2005)Google Scholar
  8. 8.
    Setlur, S., Kompalli, S., Ramanaprasad, V., Govindaraju, V.: Creation of data resources and design of an evaluation test bed for Devanagari script recognition. In: 13th International Workshop on Research Issues in Data Engineering: Multi-lingual Information Management, pp. 55–61. IEEE, Washington, DC (2003)Google Scholar
  9. 9.
    Lee, R.A., Balick, M.J.: Indigenous use of hoodia gordonii and appetite suppression. EXPLORE: The Journal of Science and Healing 3(4), 404–406 (2007)CrossRefGoogle Scholar
  10. 10.
    Williams, K., Manilal, S., Molwantoa, L., Suleman, H.: A visual dictionary for an extinct language. In: Chowdhury, G., Koo, C., Hunter, J. (eds.) ICADL 2010. LNCS, vol. 6102, pp. 1–4. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Williams, K., Suleman, H.: Translating handwritten bushman texts. In: Proceedings of the 10th Annual Joint Conference on Digital Libraries, pp. 109–118. ACM, New York (2010)CrossRefGoogle Scholar
  12. 12.
    Rei, F.: Tipa: A system for processing phonetic symbols in LaTeX. TUGboat 17(2), 102–114 (1996)Google Scholar
  13. 13.
    Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13(1), 146–168 (2007)Google Scholar
  14. 14.
    Marti, U., Bunke, H.: On the influence of vocabulary size and language models in unconstrained handwritten text recognition. In: Proceedings of the Sixth International Conference on Document Analysis and Recognition, pp. 260–265. IEEE, Washington, DC (2001)CrossRefGoogle Scholar
  15. 15.
    Pastor, M., Toselli, A.H., Vidal, E.: Projection profile based algorithm for slant removal. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 183–190. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Shapiro, L., Stockman, G.: Computer vision. Prentice Hall, Englewood Cliffs (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kyle Williams
    • 1
  • Hussein Suleman
    • 1
  1. 1.Department of Computer ScienceUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations