Comparative Analysis of Power Consumption in University Buildings Using envSOM

  • Serafín Alonso
  • Manuel Domínguez
  • Miguel Angel Prada
  • Mika Sulkava
  • Jaakko Hollmén
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7014)

Abstract

Analyzing power consumption is important for economic and environmental reasons. Through the analysis of electrical variables, power could be saved and, therefore, better energy efficiency could be reached in buildings. The application of advanced data analysis helps to provide a better understanding, especially if it enables a joint and comparative analysis of different buildings which are influenced by common environmental conditions. In this paper, we present an approach to monitor and compare electrical consumption profiles of several buildings from the Campus of the University of León. The envSOM algorithm, a modification of the self-organizing map (SOM), is used to reduce the dimension of data and capture their electrical behaviors conditioned on the environment. After that, a Sammon’s mapping is used to visualize global, component-wise or environmentally conditioned similarities among the buildings. Finally, a clustering step based on k-means algorithm is performed to discover groups of buildings with similar electrical behavior.

Keywords

Power consumption Environmental conditions Data mining Exploratory analysis Self-Organizing Maps envSOM Sammon’s mapping k-means 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    European Parliament: Directive 2010/31/EU of the European Parliament and of the Council of 19 may 2010 on the energy performance of buildings (recast). Official Journal of the European Union 53(L153) (2010)Google Scholar
  2. 2.
    Gershenfeld, N., Samouhos, S., Nordman, B.: Intelligent infrastructure for energy efficiency. Science 327(5969), 1086–1088 (2010)CrossRefGoogle Scholar
  3. 3.
    Darby, S.: The effectiveness of feedback on energy consumption. Technical report, Environmental Change Institute. University of Oxford (2006)Google Scholar
  4. 4.
    Sforna, M.: Data mining in a power company customer database. Electric Power Systems Research 55(3), 201–209 (2000)CrossRefGoogle Scholar
  5. 5.
    Chicco, G., Napoli, R., Piglione, F., Postolache, P., Scutariu, M., Toader, C.: Load pattern-based classification of electricity customers. IEEE Transactions on Power Systems 19(2), 1232–1239 (2004)CrossRefGoogle Scholar
  6. 6.
    Figueiredo, V., Rodrigues, F., Vale, Z., Gouveia, J.: An electric energy consumer characterization framework based on data mining techniques. IEEE Transactions on Power Systems 20(2), 596–602 (2005)CrossRefGoogle Scholar
  7. 7.
    Verdú, S., García, M., Senabre, C., Marín, A., Franco, F.: Classification, filtering, and identification of electrical customer load patterns through the use of self-organizing maps. IEEE Transactions on Power Systems 21(4), 1672–1682 (2006)CrossRefGoogle Scholar
  8. 8.
    Kohonen, T.: Self-Organizing Maps. Springer, New York (1995)CrossRefMATHGoogle Scholar
  9. 9.
    Alonso, S., Sulkava, M., Prada, M., Domínguez, M., Hollmén, J.: EnvSOM: A SOM algorithm conditioned on the environment for clustering and visualization. In: Laaksonen, J., Honkela, T. (eds.) WSOM 2011. LNCS, vol. 6731, pp. 61–70. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Eckerson, W.W.: Three tier client/server architectures: Achieving scalability, performance, and efficiency in client/server applications. Open Information Systems 3(20), 46–50 (1995)Google Scholar
  11. 11.
    Kastner, W., Neugschwandtner, G., Soucek, S., Newmann, H.: Communication systems for building automation and control. Proceedings of the IEEE 93(6), 1178–1203 (2005)CrossRefGoogle Scholar
  12. 12.
    Samad, T., Harp, S.A.: Self-organization with partial data. Network: Computation in Neural Systems 3, 205–212 (1992)CrossRefGoogle Scholar
  13. 13.
    Fan, S., Chen, L., Lee, W.J.: Short-term load forecasting using comprehensive combination based on multimeteorological information. IEEE Transactions on Industry Applications 45(4), 1460–1466 (2009)CrossRefGoogle Scholar
  14. 14.
    Kohonen, T., Oja, E., Simula, O., Visa, A., Kangas, J.: Engineering applications of the self-organizing map. Proceedings of the IEEE 84(10), 1358–1384 (1996)CrossRefGoogle Scholar
  15. 15.
    Vesanto, J.: SOM-based data visualization methods. Intelligent Data Analysis 3(2), 111–126 (1999)CrossRefMATHGoogle Scholar
  16. 16.
    Sammon Jr., J.W.: A non-linear mapping for data structure analysis. IEEE Transactions on Computers 18, 401–409 (1969)CrossRefGoogle Scholar
  17. 17.
    Lee, J.A., Verleysen, M.: Nonlinear Dimensionality Reduction. Information Science and Statistics. Springer, Heidelberg (2007)CrossRefMATHGoogle Scholar
  18. 18.
    Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Transactions on Neural Networks 16(3), 645–678 (2005)CrossRefGoogle Scholar
  19. 19.
    Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. Intelligent Information Systems 17(2), 107–145 (2001)CrossRefMATHGoogle Scholar
  20. 20.
    Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: SOM toolbox for matlab 5. Technical Report A57, Helsinki University of Technology (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Serafín Alonso
    • 1
  • Manuel Domínguez
    • 1
  • Miguel Angel Prada
    • 1
  • Mika Sulkava
    • 2
  • Jaakko Hollmén
    • 2
  1. 1.Grupo de Investigación SUPPRESSUniversidad de LeónLeónSpain
  2. 2.Department of Information and Computer ScienceAalto University School of ScienceEspooFinland

Personalised recommendations