Analyzing Emotional Semantics of Abstract Art Using Low-Level Image Features

  • He Zhang
  • Eimontas Augilius
  • Timo Honkela
  • Jorma Laaksonen
  • Hannes Gamper
  • Henok Alene
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7014)


In this work, we study people’s emotions evoked by viewing abstract art images based on traditional low-level image features within a binary classification framework. Abstract art is used here instead of artistic or photographic images because those contain contextual information that influences the emotional assessment in a highly individual manner. Whether an image of a cat or a mountain elicits a negative or positive response is subjective. After discussing challenges concerning image emotional semantics research, we empirically demonstrate that the emotions triggered by viewing abstract art images can be predicted with reasonable accuracy by machine using a variety of low-level image descriptors such as color, shape, and texture. The abstract art dataset that we created for this work has been made downloadable to the public.


emotional semantics abstract art psychophysical evaluation image features classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bishop, C.M.: Pattern recognition and machine learning, vol. 4. Springer, New York (2006)zbMATHGoogle Scholar
  2. 2.
    Chang, C., Lin, C.: LIBSVM: a library for support vector machines (2001)Google Scholar
  3. 3.
    Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)zbMATHGoogle Scholar
  4. 4.
    Datta, R., Joshi, D., Li, J., Wang, J.Z.: Studying aesthetics in photographic images using a computational approach. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part III. LNCS, vol. 3953, pp. 288–301. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys (CSUR) 40(2), 5 (2008)CrossRefGoogle Scholar
  6. 6.
    Hanjalic, A.: Extracting moods from pictures and sounds: Towards truly personalized TV. IEEE Signal Processing Magazine 23(2), 90–100 (2006)CrossRefGoogle Scholar
  7. 7.
    Honkela, T., Janasik, N., Lagus, K., Lindh-Knuutila, T., Pantzar, M., Raitio, J.: GICA: Grounded intersubjective concept analysis – a method for enhancing mutual understanding and participation. Tech. Rep. TKK-ICS-R41, AALTO-ICS, ESPOO (December 2010)Google Scholar
  8. 8.
    Honkela, T., Lindh-Knuutila, T., Lagus, K.: Measuring adjective spaces. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010, Part I. LNCS, vol. 6352, pp. 351–355. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Machajdik, J., Hanbury, A.: Affective image classification using features inspired by psychology and art theory. In: Proceedings of the International Conference on Multimedia, pp. 83–92. ACM, New York (2010)Google Scholar
  10. 10.
    Orlov, N., Johnston, J., Macura, T., Shamir, L., Goldberg, I.G.: Computer Vision for Microscopy Applications. In: Obinata, G., Dutta, A. (eds.) Vision Systems–Segmentation and Pattern Recognition, pp. 221–242. ARS Pub. (2007)Google Scholar
  11. 11.
    Orlov, N., Shamir, L., Macura, T., Johnston, J., Eckley, D.M., Goldberg, I.G.: WND-CHARM: Multi-purpose image classification using compound image transforms. Pattern Recognition Letters 29(11), 1684–1693 (2008)CrossRefGoogle Scholar
  12. 12.
    Osgood, C.E., Suci, G.J., Tannenbaum, P.: The measurement of meaning. University of Illinois Press, Urbana (1957)Google Scholar
  13. 13.
    Ou, L., Luo, M.R., Woodcock, A., Wright, A.: A study of colour emotion and colour preference. Part I: Colour emotions for single colours. Color Research & Application 29(3), 232–240 (2004)CrossRefGoogle Scholar
  14. 14.
    Shamir, L., Macura, T., Orlov, N., Eckley, D.M., Goldberg, I.G.: Impressionism, expressionism, surrealism: Automated recognition of painters and schools of art. ACM Transactions on Applied Perception 7, 8:1–8:17 (2010)Google Scholar
  15. 15.
    Shamir, L., Orlov, N., Eckley, D.M., Macura, T., Johnston, J., Goldberg, I.G.: Wndchrm–an open source utility for biological image analysis. Source Code for Biology and Medicine 3(1), 1–13 (2008)CrossRefGoogle Scholar
  16. 16.
    Solli, M., Lenz, R.: Emotion related structures in large image databases. In: Proceedings of the ACM International Conference on Image and Video Retrieval, pp. 398–405. ACM, New York (2010)CrossRefGoogle Scholar
  17. 17.
    Wang, W., He, Q.: A survey on emotional semantic image retrieval. In: International Conference on Image Processing (ICIP), pp. 117–120. IEEE, Los Alamitos (2008)Google Scholar
  18. 18.
    Wang, W., Yu, Y., Jiang, S.: Image retrieval by emotional semantics: A study of emotional space and feature extraction. In: International Conference on Systems, Man and Cybernetics (SMC 2006), vol. 4, pp. 3534–3539. IEEE, Los Alamitos (2006)Google Scholar
  19. 19.
    Wu, Q., Zhou, C., Wang, C.: Content-based affective image classification and retrieval using support vector machines. In: Tao, J., Tan, T., Picard, R.W. (eds.) ACII 2005. LNCS, vol. 3784, pp. 239–247. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Zhang, H., Koskela, M., Laaksonen, J.: Report on forms of enriched relevance feedback. Technical Report TKK-ICS-R10, Helsinki University of Technology, Department of Information and Computer Science (November 2008)Google Scholar
  21. 21.
    Zhang, H., Ruokolainen, T., Laaksonen, J., Hochleitner, C., Traunmüller, R.: Gaze-and speech-enhanced content-based image retrieval in image tagging. In: International Conference on Artificial Neural Networks–ICANN 2011, pp. 373–380 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • He Zhang
    • 1
  • Eimontas Augilius
    • 1
  • Timo Honkela
    • 1
  • Jorma Laaksonen
    • 1
  • Hannes Gamper
    • 2
  • Henok Alene
    • 1
  1. 1.Department of Information and Computer ScienceAalto University School of ScienceEspooFinland
  2. 2.Department of Media TechnologyAalto University School of ScienceEspooFinland

Personalised recommendations