Prototype-Based Classification of Dissimilarity Data

  • Barbara Hammer
  • Bassam Mokbel
  • Frank-Michael Schleif
  • Xibin Zhu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7014)


Unlike many black-box algorithms in machine learning, prototype-based models offer an intuitive interface to given data sets, since prototypes can directly be inspected by experts in the field. Most techniques rely on Euclidean vectors such that their suitability for complex scenarios is limited. Recently, several unsupervised approaches have successfully been extended to general, possibly non-Euclidean data characterized by pairwise dissimilarities. In this paper, we shortly review a general approach to extend unsupervised prototype-based techniques to dissimilarities, and we transfer this approach to supervised prototype-based classification for general dissimilarity data. In particular, a new supervised prototype-based classification technique for dissimilarity data is proposed.


Vector Quantization Learn Vector Quantization Relevance Vector Machine Stochastic Gradient Descent Musical Piece 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alex, N., Hasenfuss, A., Hammer, B.: Patch clustering for massive data sets. Neurocomputing 72(7-9), 1455–1469 (2009)CrossRefGoogle Scholar
  2. 2.
    Bishop, C., Svensen, M., Williams, C.: The generative topographic mapping. Neural Computation 10(1), 215–234 (1998)CrossRefzbMATHGoogle Scholar
  3. 3.
    Cilibrasi, R., Vitanyi, M.B.: Clustering by compression. IEEE Transactions on Information Theory 51(4), 1523–1545 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cottrell, M., Hammer, B., Hasenfuss, A., Villmann, T.: Batch and median neural gas. Neural Networks 19, 762–771 (2006)CrossRefzbMATHGoogle Scholar
  5. 5.
    Denecke, A., Wersing, H., Steil, J.J., Koerner, E.: Online Figure-Ground Segmentation with Adaptive Metrics in Generalized LVQ. Neurocomputing 72(7-9), 1470–1482 (2009)CrossRefGoogle Scholar
  6. 6.
    Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gisbrecht, A., Hammer, B., Schleif, F.-M., Zhu, X.: Accelerating dissimilarity clustering for biomedical data analysis. In: Proceedings of SSCI (2011)Google Scholar
  8. 8.
    Gisbrecht, A., Mokbel, B., Hammer, B.: Relational generative topographic mapping. Neurocomputing 74(9), 1359–1371 (2011)CrossRefGoogle Scholar
  9. 9.
    Hammer, B., Hasenfuss, A.: Topographic Mapping of Large Dissimilarity Data Sets. Neural Computation 22(9), 2229–2284 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Networks 15(8-9), 1059–1068 (2002)CrossRefGoogle Scholar
  11. 11.
    Hasenfuss, A., Hammer, B.: Relational Topographic Maps. In: Berthold, M.R., Shawe-Taylor, J., Lavrač, N. (eds.) IDA 2007. LNCS, vol. 4723, pp. 93–105. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Hasenfuss, A., Boerger, W., Hammer, B.: Topographic processing of very large text datasets. In: Daglie, C.H., et al. (eds.) Smart Systems Engineering: Computational Intelligence in Architecting Systes (ANNIE 2008), pp. 525–532. ASME Press (2008)Google Scholar
  13. 13.
    Kietzmann, T., Lange, S., Riedmiller, M.: Incremental GRLVQ: Learning Relevant Features for 3D Object Recognition. Neurocomputing 71(13-15), 2868–2879 (2008)CrossRefGoogle Scholar
  14. 14.
    Kohonen, T. (ed.): Self-Organizing Maps, 3rd edn. Springer-Verlag New York, Inc., New York (2001)zbMATHGoogle Scholar
  15. 15.
    Kohonen, T., Somervuo, P.: How to make large self-organizing maps for nonvectorial data. Neural Networks 15(8-9), 945–952 (2002)CrossRefGoogle Scholar
  16. 16.
    Lundsteen, C., Phillip, J., Granum, E.: Quantitative analysis of 6985 digitized trypsin g-banded human metaphase chromosomes. Clinical Genetics 18, 355–370 (1980)CrossRefGoogle Scholar
  17. 17.
    Maier, T., Klebel, S., Renner, U., Kostrzewa, M.: Fast and reliable maldi-tof ms–based microorganism identification. Nature Methods (3) (2006)Google Scholar
  18. 18.
    Martinetz, T.M., Berkovich, S.G., Schulten, K.J.: ’Neural-gas’ network for vector quantization and its application to time-series prediction. IEEE Trans. on Neural Networks 4(4), 558–569 (1993)CrossRefGoogle Scholar
  19. 19.
    Martinetz, T., Schulten, K.: Topology representing networks. Neural Networks 7(3) (1994)Google Scholar
  20. 20.
    Mokbel, B., Hasenfuss, A., Hammer, B.: Graph-Based Representation of Symbolic Musical Data. In: Torsello, A., Escolano, F., Brun, L. (eds.) GbRPR 2009. LNCS, vol. 5534, pp. 42–51. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Neuhaus, M., Bunke, H.: Edit distance based kernel functions for structural pattern classification. Pattern Recognition 39(10), 1852–1863 (2006)CrossRefzbMATHGoogle Scholar
  22. 22.
    Pekalska, E., Duin, R.P.W.: The Dissimilarity Representation for Pattern Recognition. Foundations and Applications. World Scientific, Singapore (2005)CrossRefzbMATHGoogle Scholar
  23. 23.
    Qin, A.K., Suganthan, P.N.: A novel kernel prototype-based learning algorithm. In: Proc. of ICPR 2004, pp. 621–624 (2004)Google Scholar
  24. 24.
    Sato, A., Yamada, K.: Generalized learning vector quantization. In: Mozer, M.C., Touretzky, D.S., Hasselmo, M.E. (eds.) Proceedings of the 1995 Conference. Advances in Neural Information Processing Systems, vol. 8, pp. 423–429. MIT Press, Cambridge (1996)Google Scholar
  25. 25.
    Schneider, P., Biehl, M., Hammer, B.: Adaptive relevance matrices in learning vector quantization. Neural Computation 21(12), 3532–3561 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Schneider, P., Biehl, M., Hammer, B.: Distance Learning in Discriminative Vector Quantization. Neural Computation 21(10), 2942–2969 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Seo, S., Obermayer, K.: Soft learning vector quantization. Neural Computation 15(7), 1589–1604 (2003)CrossRefzbMATHGoogle Scholar
  28. 28.
    Tipping, M.E.: Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research 1, 211–244 (2001)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Williams, C., Seeger, M.: Using the nyström method to speed up kernel machines. In: Advances in Neural Information Processing Systems, vol. 13, pp. 682–688. MIT Press, Cambridge (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Barbara Hammer
    • 1
  • Bassam Mokbel
    • 1
  • Frank-Michael Schleif
    • 1
  • Xibin Zhu
    • 1
  1. 1.CITEC centre of excellenceBielefeld UniversityBielefeldGermany

Personalised recommendations