Development of a Search System for Heterogeneous Image Database

  • Sanparith Marukatat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6746)


Nowadays, multimedia data, especially image, are of increasing number. Content-based image retrieval system is becoming an important tool to assist user in managing his/her collection of images. This work presents a development of an image search system for a particular image database containing various types of images. We present a study of visual descriptors for this database and a simple strategy to speed-up the retrieval process. We also present a relevance feedback technique based on semi-supervised learning technique. Experimental result of the proposed system seems promising.


Image retrieval visual descriptor relevance feedback 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D., Steele, D., Yanker, P.: Query by image and video content: The qbic system. IEEE Computer 28(9), 23–32 (1995)CrossRefGoogle Scholar
  2. 2.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary pattern. IEEE Transactions on Pattern Analysis and Machine Intelligence (2002)Google Scholar
  3. 3.
    Pass, G., Zabih, R., Miller, J.: Comparing images using color coherence vectors. In: Proceedings of the ACM Multimedia (1996)Google Scholar
  4. 4.
    Smith, J.R., Chang, S.F.: Query by color regions using visualseek content-based visual query system. In: Proceedings of the ACM Multimedia (1996)Google Scholar
  5. 5.
    Vasconcelos, N.: From pixels to semantic spaces: Advances in content-based image retrieval. IEEE Computer, 20–26 (2008)Google Scholar
  6. 6.
    Viola, P., Jones, M.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)CrossRefGoogle Scholar
  7. 7.
    Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Advance in Neural Information Processing Systems, NIPS (2008)Google Scholar
  8. 8.
    Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using gaussian fields and harmonic functions. In: Proceedings of the International Conference on Machine Learning, ICML (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sanparith Marukatat
    • 1
  1. 1.IMG labNECTECPathumthaniThailand

Personalised recommendations