Regularization of Positive Definite Matrix Fields Based on Multiplicative Calculus

  • Luc Florack
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6667)


Multiplicative calculus provides a natural framework in problems involving positive images and positivity preserving operators. In increasingly important, complex imaging frameworks, such as diffusion tensor imaging, it complements standard calculus in a nontrivial way. The purpose of this article is to illustrate the basics of multiplicative calculus and its application to the regularization of positive definite matrix fields.


Scale Space Commutative Case Multiscale Representation Standard Calculus Biomedical Image Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Volterra, V.: Sulle equazioni differenziali lineari. Rendiconti Academia dei Lincei (series 4)3, 393–396 (1887)Google Scholar
  2. 2.
    Gill, R.D., Johansen, S.: A survey of product-integration with a view toward application in survival analysis. Annals of Statistics 18, 1501–1555 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magnetic Resonance in Medicine 56(2), 411–421 (2006)CrossRefGoogle Scholar
  4. 4.
    Fillard, P., Pennec, X., Arsigny, V., Ayache, N.: Clinical DT-MRI estimation, smoothing, and fiber tracking with log-Euclidean metrics. IEEE Transactions on Medical Imaging 26(11) (November 2007)Google Scholar
  5. 5.
    Florack, L.M.J., Astola, L.J.: A multi-resolution framework for diffusion tensor images. In: Aja Fernández, S., de Luis Garcia, R. (eds.) CVPR Workshop on Tensors in Image Processing and Computer Vision, Anchorage, Alaska, USA, June 24-26. IEEE, Los Alamitos (2008); Digital proceedingsGoogle Scholar
  6. 6.
    Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. International Journal of Computer Vision 66(1), 41–66 (2006)CrossRefzbMATHGoogle Scholar
  7. 7.
    Florack, L., van Assen, H.: A new methodology for multiscale myocardial deformation and strain analysis based on tagging MRI. International Journal of Biomedical Imaging (2010), Published online: doi:10.1155/2010/341242Google Scholar
  8. 8.
    Bashirov, A.E., Kurpinar, E.M., Özyapici, A.: Multiplicative calculus and its applications. Journal of Mathematical Analysis and Applications 337, 36–48 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Grossman, M., Katz, R.: Non-Newtonian Calculus. Lee Press, Pigeon Cove (1972)zbMATHGoogle Scholar
  10. 10.
    Guenther, R.A.: Product integrals and sum integrals. International Journal of Mathematical Education in Science and Technology 14(2), 243–249 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Rybaczuk, M., Kędzia, A., Zieliński, W.: The concept of physical and fractal dimension II. the differential calculus in dimensional spaces. Chaos, Solitons and Fractals 12, 2537–2552 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Stanley, D.: A multiplicative calculus. PRIMUS: Problems, Resources, and Issues in Mathematics Undergraduate Studies IX(4), 310–326 (1999)CrossRefGoogle Scholar
  13. 13.
    Gantmacher, F.R.: The Theory of Matrices. American Mathematical Society (2001)Google Scholar
  14. 14.
    Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM (2008)Google Scholar
  15. 15.
    Slavík, A.: Product Integration, its History and Applications. Matfyzpress, Prague (2007)zbMATHGoogle Scholar
  16. 16.
    Florack, L.M.J., Maas, R., Niessen, W.J.: Pseudo-linear scale-space theory. International Journal of Computer Vision 31(2-3), 247–259 (1999)CrossRefGoogle Scholar
  17. 17.
    Welk, M.: Families of generalised morphological scale spaces. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 770–784. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Fung, T.C.: Computation of the matrix exponential and its derivatives by scaling and squaring. International Journal for Numerical Methods in Engineering 59, 1273–1286 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix. SIAM Review 20(4), 801–836 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Lenglet, C., Deriche, R., Faugeras, O.: Inferring white matter geometry from diffusion tensor MRI: Application to connectivity mapping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 127–140. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Prados, E., Soatto, S., Lenglet, C., Pons, J.P., Wotawa, N., Deriche, R., Faugeras, O.: Control theory and fast marching techniques for brain connectivity mapping. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, USA, vol. 1, pp. 1076–1083. IEEE Computer Society Press (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Luc Florack
    • 1
    • 2
  1. 1.Department of Mathematics & Computer ScienceEindhoven University of TechnologyThe Netherlands
  2. 2.Department of Biomedical EngineeringEindhoven University of TechnologyThe Netherlands

Personalised recommendations