Quadrature Nodes Meet Stippling Dots

  • Manuel Gräf
  • Daniel Potts
  • Gabriele Steidl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6667)


The stippling technique places black dots such that their density gives the impression of tone. This is the first paper that relates the distribution of stippling dots to the classical mathematical question of finding ’optimal’ nodes for quadrature rules. More precisely, we consider quadrature error functionals on reproducing kernel Hilbert spaces (RKHSs) with respect to the quadrature nodes and suggest to use optimal distributions of these nodes as stippling dot positions. Interestingly, in special cases, our quadrature errors coincide with discrepancy functionals and with recently proposed attraction-repulsion functionals. Our framework enables us to consider point distributions not only in ℝ2 but also on the torus \({\mathbb{T}}^2\) and the sphere \({\mathbb{S}}^2\). For a large number of dots the computation of their distribution is a serious challenge and requires fast algorithms. To this end, we work in RKHSs of bandlimited functions, where the quadrature error can be replaced by a least squares functional. We apply a nonlinear conjugate gradient (CG) method on manifolds to compute a minimizer of this functional and show that each step can be efficiently realized by nonequispaced fast Fourier transforms. We present numerical stippling results on \({\mathbb{S}}^2\).




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aronszajn, N.: Theory of reproducing kernels. Trans. Amer. Math. Soc. 68, 337–404 (1950)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Aurenhammer, F., Hoffmann, F., Aronov, B.: Minkowski-type theorems and least-squares clustering. Algorithmica 20, 61–76 (1998)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Balzer, M., Schlömer, T., Deussen, O.: Capacity-constrained point distributions: A variant of Lloyd’s method. ACM Transactions on Graphics 28(3), Article 86 (2009)CrossRefGoogle Scholar
  4. 4.
    Beylkin, G.: On the fast Fourier transform of functions with singularities. Appl. Comput. Harmon. Anal. 2, 363–381 (1995)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: Applications and algorithms. SIAM Review 41, 637–676 (1999)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Dutt, A., Rokhlin, V.: Fast Fourier transforms for nonequispaced data. SIAM J. Sci. Stat. Comput. 14, 1368–1393 (1993)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Gräf, M., Kunis, S., Potts, D.: On the computation of nonnegative quadrature weights on the sphere. Appl. Comput. Harmon. Anal. 27, 124–132 (2009)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Gräf, M., Potts, D.: On the computation of spherical designs by a new optimization approach based on fast spherical Fourier transforms. Numer. Math. (2011), doi:10.1007/s00211-011-0399-7Google Scholar
  9. 9.
    Gräf, M., Potts, D., Steidl, G.: Quadrature errors, discrepancies and their relations to halftoning on the torus and the sphere. TU Chemnitz, Fakultät für Mathematik, Preprint 5 (2011)Google Scholar
  10. 10.
    Graf, S., Luschgy, H.: Foundations of Quantization for Probability Distributions. LNM, vol. 1730. Springer, Berlin (2000)MATHGoogle Scholar
  11. 11.
    Healy, D.M., Kostelec, P.J., Rockmore, D.: Towards Safe and Effective High-Order Legendre Transforms with Applications to FFTs for the 2-sphere. Adv. Comput. Math. 21, 59–105 (2004)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Keiner, J., Kunis, S., Potts, D.: Using NFFT3 - a software library for various nonequispaced fast Fourier transforms. ACM Trans. Math. Software 36, Article 19, 1–30 (2009)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Lloyd, S.P.: Least square quantization in PCM. IEEE Transactions on Information Theory 28, 129–137 (1982)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Müller, C.: Spherical Harmonics. Springer, Aachen (1966)CrossRefMATHGoogle Scholar
  15. 15.
    Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems Volume II: Standard Information for Functionals. Eur. Math. Society, EMS Tracts in Mathematics 12 (2010)Google Scholar
  16. 16.
    Potts, D., Steidl, G., Tasche, M.: Fast Fourier transforms for nonequispaced data: A tutorial. In: Benedetto, J.J., Ferreira, P.J. (eds.) Modern Sampling Theory: Mathematics and Applications, pp. 247–270. Birkhäuser, Boston (2001)CrossRefGoogle Scholar
  17. 17.
    Schmaltz, C., Gwosdek, P., Bruhn, A., Weickert, J.: Electrostatic halftoning. Computer Graphics Forum 29, 2313–2327 (2010)CrossRefGoogle Scholar
  18. 18.
    Secord, A.: Weighted Voronoi stippling. In: Proceedings of the 2nd International Symposium on Non-Photorealistic Animation and Rendering, pp. 37–43. ACM Press, New York (2002)Google Scholar
  19. 19.
    Sloan, I.H., Womersley, R.S.: A variational characterisation of spherical designs. J. Approx. Theory 159, 308–318 (2009)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Smith, S.T.: Optimization techniques on Riemannian manifolds. In: Hamiltonian and gradient flows, algorithms and control. Fields Inst. Commun., vol. 3, pp. 113–136. Amer. Math. Soc., Providence (1994)Google Scholar
  21. 21.
    Teuber, T., Steidl, G., Gwosdek, P., Schmaltz, C., Weickert, J.: Dithering by differences of convex functions. SIAM J. Imaging Sci. 4, 79–108 (2011)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Udrişte, C.: Convex functions and optimization methods on Riemannian manifolds. Mathematics and its Applications, vol. 297. Kluwer Academic Publishers Group, Dordrecht (1994)CrossRefMATHGoogle Scholar
  23. 23.
    Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Manuel Gräf
    • 1
  • Daniel Potts
    • 1
  • Gabriele Steidl
    • 2
  1. 1.Faculty of MathematicsChemnitz University of TechnologyGermany
  2. 2.Department of MathematicsUniversity of KaiserslauternGermany

Personalised recommendations