Advertisement

Evolving Numerical Constants in Grammatical Evolution with the Ephemeral Constant Method

  • Douglas A. Augusto
  • Helio J. C. Barbosa
  • André M. S. Barreto
  • Heder S. Bernardino
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7026)

Abstract

This paper assesses the new numerical-constant generation method called ephemeral constant, which can be seen as a translation of the classical genetic programming’s ephemeral random constant to the grammatical evolution framework. Its most distinctive feature is that it decouples the number of bits used to encode the grammar’s production rules from the number of bits used to represent a constant. This makes it possible to increase the method’s representational power without incurring in an overly redundant encoding scheme. We present experiments comparing ephemeral constant with the three most popular approaches for constant handling: the traditional approach, digit concatenation, and persistent random constant. By varying the number of bits to represent a constant, we can increase the numerical precision to the desired level of accuracy, overcoming by a large margin the other approaches.

Keywords

Constant Creation Grammatical Evolution Genetic Programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Augusto, D.A., Barreto, A.M., Barbosa, H.J., Bernardino, H.S.: A new approach for generating numerical constants in grammatical evolution. In: Proc. of the Conf. on Genetic and Evolutionary Computation (2011) Extended AbstractGoogle Scholar
  2. 2.
    Bernardino, H.S., Barbosa, H.J.: Grammar-Based Immune Programming for Symbolic Regression. In: Andrews, P.S., Timmis, J., Owens, N.D.L., Aickelin, U., Hart, E., Hone, A., Tyrrell, A.M. (eds.) ICARIS 2009. LNCS, vol. 5666, pp. 274–287. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Bernardino, H.S., Barbosa, H.J.: Grammar-based immune programming. Natural Computing, 1–33 (2010)Google Scholar
  4. 4.
    Cramer, N.L.: A representation for the adaptive generation of simple sequential programs. In: Proc. 1st Intl. Conf. on Genetic Algorithms, Hillsdale, NJ, USA, pp. 183–187 (1985)Google Scholar
  5. 5.
    Dempsey, I., O’Neill, M., Brabazon, A.: Grammatical constant creation. In: Proc. Conf. on Genetic and Evolutionary Computation, pp. 447–458 (2004)Google Scholar
  6. 6.
    Dempsey, I., O’Neill, M., Brabazon, A.: Meta-grammar constant creation with grammatical evolution by grammatical evolution. In: Proc. Conf. on Genetic and Evolutionary Computation, pp. 1665–1671. ACM, New York (2005)Google Scholar
  7. 7.
    Dempsey, I., O’Neill, M., Brabazon, A.: Constant creation in grammatical evolution. Int. J. Innov. Comput. Appl. 1, 23–38 (2007)CrossRefGoogle Scholar
  8. 8.
    Dolan, E., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Programming 91(2), 201–213 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  10. 10.
    O’Neill, M., Brabazon, A.: Grammatical differential evolution. In: Proc. Intl. Conf. on Artificial Intelligence, Las Vegas, NV, USA, pp. 231–236 (2006)Google Scholar
  11. 11.
    O’Neill, M., Brabazon, A., Adley, C.: The automatic generation of programs for classification problems with grammatical swarm. In: Proc. of the Congress on Evolutionary Computation, vol. 1, pp. 104–110 (2004)Google Scholar
  12. 12.
    O’Neill, M., Dempsey, I., Brabazon, A., Ryan, C.: Analysis of a Digit Concatenation Approach to Constant Creation. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 173–182. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evol. Comput. 5(4), 349–358 (2001)MathSciNetCrossRefGoogle Scholar
  14. 14.
    O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. Kluwer Academic Publishers (2003)Google Scholar
  15. 15.
    Rowe, J., Whitley, D., Barbulescu, L., Watson, J.-P.: Properties of gray and binary representations. Evol. Comput. 12, 47–76 (2004)CrossRefGoogle Scholar
  16. 16.
    Ryan, C., Collins, J.J., Neill, M.O.: Grammatical Evolution: Evolving Programs for an Arbitrary Language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–95. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Douglas A. Augusto
    • 1
  • Helio J. C. Barbosa
    • 1
  • André M. S. Barreto
    • 1
  • Heder S. Bernardino
    • 1
  1. 1.Laboratório Nacional de Computação CientíficaPetrópolisBrazil

Personalised recommendations