Visualizing the Evolution of Social Networks

  • Márcia Oliveira
  • João Gama
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7026)


In recent years we witnessed an impressive advance in the social networks field, which became a “hot” topic and a focus of considerable attention. Also, the development of methods that focus on the analysis and understanding of the evolution of data are gaining momentum. In this paper we present an approach to visualize the evolution of dynamic social networks by using Tucker decomposition and the concept of trajectory. Our visualization strategy is based on trajectories of network’s actors in a bidimensional space that preserves its structural properties. Furthermore, this approach can be used to identify similar actors by comparing the shape and position of the trajectories. To illustrate the proposed approach we conduct a case study using a set of temporal friendship networks.


Data Evolution Data Visualization Social Networks Trajectories Tucker3 model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moody, J., McFarland, D., Bender-deMoll, S.: Dynamic Network Visualization. American Journal of Sociology 110(4), 1206–1241 (2005)CrossRefGoogle Scholar
  2. 2.
    Kolda, T.G., Bade, B.W.: Tensor Decompositions and Applications. SIAM Review 51(3), 455–500 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Smilde, A.K.: Three-way Analyses Problems and Prospects. Chemometrics and Intelligent Laboratory Systems 15, 143–157 (1992)CrossRefGoogle Scholar
  4. 4.
    Tucker, L.: Some Mathematical Notes on Three-Mode Factor Analysis. Psychometrika 31(3), 279–311 (1966)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Kroonenberg, P.M.: Three-mode Principal Component Analysis: Theory and Applications. DSWO Press, Leiden (1983)Google Scholar
  6. 6.
    Aigner, W., Miksch, S., Muller, W., Schumann, H., Tominski, C.: Visualizing Time-Oriented Data - a Systematic View. Computers and Graphics 31, 401–409 (2007)CrossRefGoogle Scholar
  7. 7.
    Oseledets, I., Savostyanov, D., Tyrtyshnikov, E.: Linear Algebra for Tensor Problems. Computing 85(3), 169–188 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bader, B., Kolda, T.: MATLAB Tensor Toolbox Version 2.4 (March 2010),
  9. 9.
    Lavit, C., Escoufier, Y., Sabatier, R., Traissac, P.: The ACT (STATIS method). Computational Statistics and Data Analysis 18, 97–119 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Sun, J., Papadimitriou, S., Lin, C., Cao, N., Liu, S., Qian, W.: Multivis: Content-based Social Network Exploration through Multi-way Visual Analysis. In: Proceedings of the 2009 SIAM International Conference on Data Mining (SDM 2009), pp.1063–1074 (2009)Google Scholar
  11. 11.
    Van de Bunt, G.G., van Duijn, M.A.J., Snijders, T.A.B.: Friendship Networks through Time: An Actor-Oriented Statistical Network Model. Computational and Mathematical Organization Theory 5, 167–192 (1999)CrossRefzbMATHGoogle Scholar
  12. 12.
    Michell, L., Amos, A.: Girls, pecking order and smoking. Social Science and Medicine 44, 1861–1869 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Márcia Oliveira
    • 1
    • 2
  • João Gama
    • 1
    • 2
  1. 1.Faculty of EconomicsUniversity of PortoPortoPortugal
  2. 2.LIAAD - INESC Porto L.A.PortoPortugal

Personalised recommendations