Towards Artificial Evolution of Complex Behaviors Observed in Insect Colonies

  • Miguel Duarte
  • Anders Lyhne Christensen
  • Sancho Oliveira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7026)


Studies on social insects have demonstrated that complex, adaptive and self-organized behavior can arise at the macroscopic level from relatively simple rules at the microscopic level. Several past studies in robotics and artificial life have focused on the evolution and understanding of the rules that give rise to a specific macroscopic behavior such as task allocation, communication or synchronization. In this study, we demonstrate how colonies of embodied agents can be evolved to display multiple complex macroscopic behaviors at the same time. In our evolutionary model, we incorporate key features present in many natural systems, namely energy consumption, birth, death and a long evaluation time. We use a generic foraging scenario in which agents spend energy while they move and they must periodically recharge in the nest to avoid death. New robots are added (born) when the colony has foraged a sufficient number of preys. We perform an analysis of the evolved behaviors and demonstrate that several colonies display multiple complex and scalable macroscopic behaviors.


Social Insect Task Allocation Intermediate Zone Macroscopic Behavior Insect Coloni 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ampatzis, C., Tuci, E., Trianni, V., Christensen, A.L., Dorigo, M.: Evolving self-assembly in autonomous homogeneous robots: experiments with two physical robots. Artificial Life 15(4), 465–484 (2009)CrossRefGoogle Scholar
  2. 2.
    Baldassarre, G., Nolfi, S., Parisi, D.: Evolving mobile robots able to display collective behaviours. Artificial Life 9, 255–267 (2002)CrossRefGoogle Scholar
  3. 3.
    Beer, R.D., Gallagher, J.C.: Evolving dynamical neural networks for adaptive behavior. Adaptive Behavior 1, 91–122 (1992)CrossRefGoogle Scholar
  4. 4.
    Dias, M.B., Zlot, R., Kalra, N., Stentz, A.: Market-based multirobot coordination: A survey and analysis. Proceedings of the IEEE 94(7), 1257–1270 (2006)CrossRefGoogle Scholar
  5. 5.
    Floreano, D., Mitri, S., Magnenat, S., Keller, L.: Evolutionary conditions for the emergence of communication in robots. Current Biology 17(6), 514–519 (2007)CrossRefGoogle Scholar
  6. 6.
    Gerkey, B.P., Matarić, M.J.: A formal analysis and taxonomy of task allocation in multi-robot systems. International Journal of Robotics Research 23(9), 939–954 (2004)CrossRefGoogle Scholar
  7. 7.
    Glass, L.: Synchronization and rhythmic processes in physiology. Nature 410, 277–284 (2001)CrossRefGoogle Scholar
  8. 8.
    Krieger, M.J.B., Billeter, J.-B., Keller, L.: Ant-like task allocation and recruitment in cooperative robots. Nature 406, 992–995 (2000)CrossRefGoogle Scholar
  9. 9.
    Labella, T.H., Dorigo, M., Deneubourg, J.-L.: Division of labor in a group of robots inspired by ants’ foraging behavior. ACM Transactions on Autonomous and Adaptive Systems 1(1), 4–25 (2006)CrossRefGoogle Scholar
  10. 10.
    Liu, W., Winfield, A.F.T., Sa, J., Chen, J., Dou, L.: Towards energy optimization: Emergent task allocation in a swarm of foraging robots. Adaptive Behavior 15(3), 289–305 (2007)CrossRefGoogle Scholar
  11. 11.
    Marocco, D., Nolfi, S.: Emergence of communication in teams of embodied and situated agents, in the evolution of language. In: Proceedings of the 6th Internation Conference on the Evolution of Language, pp. 198–205. World Scientific Publishing Ltd., Toh Tuck Link (2006)Google Scholar
  12. 12.
    Maynard-Smith, J., Szathmary, E.: The Major Transitions in Evolution. Oxford University Press, New York (1997)Google Scholar
  13. 13.
    Mazzapioda, M., Nolfi, S.: Synchronization and Gait Adaptation in Evolving Hexapod Robots. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 113–125. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    McClintock, M.K.: Menstrual synchrony and suppression. Nature 229(5282), 244–245 (1971)CrossRefGoogle Scholar
  15. 15.
    Mitri, S., Floreano, D., Keller, L.: Relatedness influences signal reliability in evolving robots. In: Proceedings of The Royal Society / Biological Sciences, vol. 278(1704), pp. 378–383 (2010)Google Scholar
  16. 16.
    Néda, Z., Ravasz, E., Brechet, Y., Vicsek, T., Barabási, A.L.: Self-organizing processes: The sound of many hands clapping. Nature 403(6772), 849–850 (2000)CrossRefGoogle Scholar
  17. 17.
    Nijmeijer, H., Rodriguez-Angeles, A.: Synchronization of mechanical systems. World Scientific Publishing Ltd., Toh Tuck Link (2003)CrossRefzbMATHGoogle Scholar
  18. 18.
    Parker, L.E.: ALLIANCE: an architecture for fault tolerant multirobot cooperation. IEEE Transactions on Robotics and Automation 14(2), 220–240 (1998)CrossRefGoogle Scholar
  19. 19.
    Quinn, M., Smith, L., Mayley, G., Husbands, P.: Evolving controllers for a homogeneous system of physical robots: Structured cooperation with minimal sensors. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 361(1811), 2321–2343 (2003)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Snedden, W.A., Greenfield, M.D., Jang, Y.: Mechanisms of selective attention in grasshopper choruses: who listens to whom? Behavioral Ecology & Sociobiology 43(1), 59–66 (1998)CrossRefGoogle Scholar
  21. 21.
    Trianni, V., Nolfi, S.: Self-organising sync in a robotic swarm. a dynamical system view. IEEE Transactions on Evolutionary Computation, 1–21 (2009)Google Scholar
  22. 22.
    Wilson, E.O.: Sociobiology: The New Synthesis. Belknap Press, Cambridge (1975)Google Scholar
  23. 23.
    Winfield, A.F.T.: Foraging Robots. In: Encyclopedia of Complexity and Systems Science, pp. 3682–3700. Springer, Berlin (2009)CrossRefGoogle Scholar
  24. 24.
    Wischmann, S., Pasemann, F.: The Emergence of Communication by Evolving Dynamical Systems. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 777–788. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Miguel Duarte
    • 1
  • Anders Lyhne Christensen
    • 1
  • Sancho Oliveira
    • 1
  1. 1.Instituto de TelecomunicaçõesInstituto Universitário de Lisboa (ISCTE-IUL)LisbonPortugal

Personalised recommendations