Querying Class-Relationship Logic in a Metalogic Framework

  • Jørgen Fischer Nilsson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7022)

Abstract

We introduce a class relationship logic for stating various forms of logical relationships between classes. This logic is intended for ontologies and knowledge bases and combinations thereof. Reasoning and querying is conducted in the Datalog logical language, which serves as an embracing decidable and tractable metalogic.

Keywords

Querying knowledge bases and ontologies Datalog as metalogic Analytic vs. synthetic knowledge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fischer Nilsson, J.: Diagrammatic Reasoning with Classes and Relationships, 18 pages (2010) (submitted) Google Scholar
  2. 2.
    Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description Logic Programs: Combining Logic programs with Description Logic. In: 12th WWW. ACM, New York (2003)Google Scholar
  3. 3.
    Calì, A., Gottlob, G., Lukasiewicz, T.: A General Datalog-based Framework for Tractable Query Answering over Ontologies. In: De Virgilio, R., Giunchiglia, F., Tanca, L. (eds.) Semantic Web Information Management: A Model-Based Perspective. Springer, Heidelberg (2010)Google Scholar
  4. 4.
    Hamfelt, A., Fischer Nilsson, J.: Towards a Logic Programming Methodology Based on Higher-Order Predicates. New Generation Computing 15(4), 421–448 (1997)CrossRefGoogle Scholar
  5. 5.
    Fischer Nilsson, J., Palomäki, J.: Towards Computing with Intensions and Extensions of Concepts. In: Charrel, P.-J., et al. (eds.) Information Modelling and Knowledge Bases IX. IOS Press, Amsterdam (1998)Google Scholar
  6. 6.
    Fischer Nilsson, J.: A Conceptual Space Logic, in Kawaguchi, E. In: Kawaguchi, E., et al. (eds.) 9th European-Japanese Conferences on Information Modelling and Knowledge Bases, Information Modelling and Knowledge Bases XI, Iwate, Japan, May 24-28. IOS Press, Amsterdam (1999/2000)Google Scholar
  7. 7.
    Fischer Nilsson, J.: On Reducing Relationships to Property Ascriptions. In: Kiyoki, Y., Tokuda, T., Jaakkola, H., Chen, X., Yoshida, N. (eds.) Information Modelling and Knowledge Bases XX. Frontiers in Artificial Intelligence and Applications, vol. 190 (January 2009) hardcover ISBN: 978-1-58603-957-8Google Scholar
  8. 8.
    Fischer Nilsson, J.: Ontological constitutions for classes and properties. In: Schärfe, H., Hitzler, P., Øhrstrøm, P. (eds.) ICCS 2006. LNCS (LNAI), vol. 4068, pp. 37–53. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Andreasen, T., et al.: A Semantics-based Approach to Retrieving Biomedical Information. In: Christiansen, H., et al. (eds.) FQAS 2011. LNCS (LNAI), pp. 108–118. Springer, Heidelberg (2011)Google Scholar
  10. 10.
    Blondé, W., et al.: Metarel: an Ontology to support the inferencing of Semantic Web relations within biomedical Ontologies. In: International Conference on Biomedical Ontology, Buffalo, NY (2009)Google Scholar
  11. 11.
    Smith, B., et al.: Relations in biomedical ontologies. Genome Biology 6, R46 (2005)Google Scholar
  12. 12.
    Zambach, S.: A formal framework on the semantics of regulatory relations and their presence as verbs in biomedical texts. In: Andreasen, T., Yager, R.R., Bulskov, H., Christiansen, H., Larsen, H.L. (eds.) FQAS 2009. LNCS, vol. 5822, pp. 443–452. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Zambach, S., Hansen, J.U.: Logical Knowledge Representation of Regulatory Relations in Biomedical Pathways. In: Khuri, S., Lhotská, L., Pisanti, N. (eds.) ITBAM 2010. LNCS, vol. 6266, pp. 186–200. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Smith, B., Rosse, C.: The Role of Foundational Relations in the Alignment of Biomedical Ontologies. In: MEDINFO 2004. IOS Press, Amsterdam (2004)Google Scholar
  15. 15.
    van Benthem, J.: Essays in Logical Semantics. Reidel, Dordrecht (1986)CrossRefMATHGoogle Scholar
  16. 16.
    Ajspur, M., Zambach, S.: Reduction of composites of relations between classes within formal ontologies. In: ARCOE Working Notes, Barcelona (2011)Google Scholar
  17. 17.
    Simons, P.: Parts, A Study in Ontology. Clarendon Press, Oxford (1987)Google Scholar
  18. 18.
    Brink, C., et al.: Peirce Algebras. Formal Aspects of Computing 6(3) (1994)Google Scholar
  19. 19.
    Sanchez Valencia, V.: The Algebra of Logic. In: Gabbay, D.M., Woods, J. (eds.) Handbook of the History of Logic. The Rise of Modern Logic: From Leibniz to Frege, vol. 3. Elsevier, Amsterdam (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jørgen Fischer Nilsson
    • 1
  1. 1.DTU InformaticsTechnical University of DenmarkDenmark

Personalised recommendations