FQAS 2011: Flexible Query Answering Systems pp 400-411

# Factorizing Three-Way Ordinal Data Using Triadic Formal Concepts

• Petr Osička
• Vilem Vychodil
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7022)

## Abstract

The paper presents a new approach to factor analysis of three-way ordinal data, i.e. data described by a 3-dimensional matrix I with values in an ordered scale. The matrix describes a relationship between objects, attributes, and conditions. The problem consists in finding factors for I, i.e. finding a decomposition of I into three matrices, an object-factor matrix A, an attribute-factor matrix B, and a condition-factor matrix C, with the number of factors as small as possible. The difference from the decomposition-based methods of analysis of three-way data consists in the composition operator and the constraint on A, B, and C to be matrices with values in an ordered scale. We prove that optimal decompositions are achieved by using triadic concepts of I, developed within formal concept analysis, and provide results on natural transformations between the space of attributes and conditions and the space of factors. We present an illustrative example demonstrating the usefulness of finding factors and a greedy algorithm for computing decompositions.

## Preview

### References

1. 1.
Belohlavek, R.: Optimal decomposition of matrices with entries from residuated lattices. J. Logic and Computation (to appear, preliminary version appeared in Proc. IEEE Intelligent Systems, pp. 15-2–15-7 (2008))Google Scholar
2. 2.
Belohlavek, R., Glodeanu, C.V., Vychodil, V.: Optimal factorization of three-way binary data using triadic concepts. (submitted, preliminary version appeared in Proc. IEEE GrC 2010, pp. 61–66 (2010))Google Scholar
3. 3.
Belohlavek, R., Osicka, P.: Triadic concept analysis of data with fuzzy attributes. In: Proc. 2010 IEEE International Conference on Granular Computing, San Jose, California, August 14–16, pp. 661–665 (2010)Google Scholar
4. 4.
Belohlavek, R., Vychodil, V.: Discovery of optimal factors in binary data via a novel method of matrix decomposition. J. Computer and System Sci. 76(1), 3–20 (2010)
5. 5.
Belohlavek, R., Vychodil, V.: Factor analysis of incidence data via novel decomposition of matrices. In: Ferré, S., Rudolph, S. (eds.) ICFCA 2009. LNCS(LNAI), vol. 5548, pp. 83–97. Springer, Heidelberg (2009)
6. 6.
Cichocki, A., et al.: Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. J. Wiley, Chichester (2009)
7. 7.
Cormen, T.H., et al.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)
8. 8.
Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer, Berlin (1999)
9. 9.
Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)
10. 10.
Jäschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: TRIAS – An Algorithm for Mining Iceberg Tri-Lattices. In: ICDM 2006, pp. 907–911 (2006)Google Scholar
11. 11.
Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Theory and Applications. Prentice-Hall, Englewood Cliffs (1995)
12. 12.
Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Review 51(3), 455–500 (2009)
13. 13.
Kroonenberg, P.M.: Applied Multiway Data Analysis. J. Wiley, Chichester (2008)
14. 14.
Kuznetsov, S., Obiedkov, S.: Comparing performance of algorithms for generating concept lattices. J. Experimental and Theoretical Articial Intelligence 14(2–3), 189–216 (2002)
15. 15.
Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: Ellis, G., Rich, W., Levinson, R., Sowa, J.F. (eds.) ICCS 1995. LNCS, vol. 954, pp. 32–34. Springer, Heidelberg (1995)
16. 16.
Mickey, M.R., Mundle, P., Engelman, L.: Boolean factor analysis. In: Dixon, W.J. (ed.) BMDP Statistical Software Manual, vol. 2, pp. 849–860. University of California Press, Berkeley (1990)Google Scholar
17. 17.
Miettinen, P., Mielikäinen, T., Gionis, A., Das, G., Mannila, H.: The Discrete Basis Problem. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 335–346. Springer, Heidelberg (2006)
18. 18.
Nau, D.S., Markowsky, G., Woodbury, M.A., Amos, D.B.: A Mathematical Analysis of Human Leukocyte Antigen Serology. Math. Biosciences 40, 243–270 (1978)
19. 19.
Outrata, J.: Preprocessing input data for machine learning by FCA. In: Kryszkiewicz, M., Obiedkov, S. (eds.) Proc. CLA 2010, vol. 672, pp. 187–198. University of Sevilla, CEUR WS (2010)Google Scholar
20. 20.
Outrata, J.: Boolean factor analysis for data preprocessing in machine learning. In: Draghici, S., et al. (eds.) Proc. ICMLA 2010, Intern. Conf. on Machine Learning and Applications, pp. 899–902. IEEE, Washington, DC (2010)
21. 21.
Smilde, A., Bro, R., Geladi, P.: Multi-way Analysis: Applications in the Chemical Sciences. J. Wiley, Chichester (2004)
22. 22.
Stockmeyer, L.J.: The set basis problem is NP-complete. IBM Research Report RC5431, Yorktown Heights, NY (1975)Google Scholar
23. 23.
Tang, F., Tao, H.: Binary principal component analysis. In: Proc. British Machine Vision Conference 2006, pp. 377–386 (2006)Google Scholar
24. 24.
Tatti, N., Mielikäinen, T., Gionis, A., Mannila, H.: What is the dimension of your binary data? In: ICDM 2006, pp. 603–612 (2006)Google Scholar
25. 25.
Wille, R.: The basic theorem of triadic concept analysis. Order 12, 149–158 (1995)