Generalizing Conjunctive Queries for Informative Answers

  • Katsumi Inoue
  • Lena Wiese
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7022)

Abstract

Deductive generalization of queries is one method to provide informative answers to failing queries. We analyze properties of operators that generalize conjunctive queries consisting of positive as well as negative literals. We show that for the stepwise combination of these operators it suffices to apply the operator in one certain order.

Keywords

Knowledge Base Free Variable Generalization Operator Predicate Symbol Generalize Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bosc, P., HadjAli, A., Pivert, O.: Incremental controlled relaxation of failing flexible queries. JIIS 33(3), 261–283 (2009)Google Scholar
  2. 2.
    Chu, W.W., Yang, H., Chiang, K., Minock, M., Chow, G., Larson, C.: CoBase: A scalable and extensible cooperative information system. JIIS 6(2/3), 223–259 (1996)Google Scholar
  3. 3.
    de Raedt, L.: Induction in logic. In: MSL-1996, pp. 29–38. AAAI Press, Menlo Park (1996)Google Scholar
  4. 4.
    Gaasterland, T., Godfrey, P., Minker, J.: Relaxation as a platform for cooperative answering. JIIS 1(3/4), 293–321 (1992)Google Scholar
  5. 5.
    Godfrey, P.: Minimization in cooperative response to failing database queries. IJCS 6(2), 95–149 (1997)MathSciNetGoogle Scholar
  6. 6.
    Godfrey, P., Minker, J., Novik, L.: An architecture for a cooperative database system. In: Risch, T., Litwin, W. (eds.) ADB 1994. LNCS, vol. 819, pp. 3–24. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  7. 7.
    Gorogiannis, N., Hunter, A.: Merging first-order knowledge using dilation operators. In: Hartmann, S., Kern-Isberner, G. (eds.) FoIKS 2008. LNCS, vol. 4932, pp. 132–150. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Halder, R., Cortesi, A.: Cooperative query answering by abstract interpretation. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 284–296. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Hurtado, C.A., Poulovassilis, A., Wood, P.T.: Query relaxation in RDF. In: Spaccapietra, S. (ed.) Journal on Data Semantics X. LNCS, vol. 4900, pp. 31–61. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Inoue, K., Iwanuma, K., Nabeshima, H.: Consequence finding and computing answers with defaults. J. Intell. Inf. Syst. 26(1), 41–58 (2006)CrossRefGoogle Scholar
  11. 11.
    Iwanuma, K., Inoue, K.: Minimal answer computation and SOL. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 245–258. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Michalski, R.S.: A theory and methodology of inductive learning. Artificial Intelligence 20(2), 111–161 (1983)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Motro, A.: Flex: A tolerant and cooperative user interface to databases. IEEE Transactions on Knowledge & Data Engineering 2(2), 231–246 (1990)CrossRefGoogle Scholar
  14. 14.
    Nabeshima, H., Iwanuma, K., Inoue, K., Ray, O.: SOLAR: An automated deduction system for consequence finding. AI Communications 23(2-3), 183–203 (2010)MathSciNetMATHGoogle Scholar
  15. 15.
    Pivert, O., Jaudoin, H., Brando, C., Hadjali, A.: A method based on query caching and predicate substitution for the treatment of failing database queries. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS, vol. 6176, pp. 436–450. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Plotkin, G.: Automatic methods of inductive inference. PhD thesis, University of Edinburgh (1971)Google Scholar
  17. 17.
    Sakama, C., Inoue, K.: Negotiation by abduction and relaxation. In: AAMAS 2007. IFAAMAS, pp. 1010–1025 (2007)Google Scholar
  18. 18.
    Shin, M.K., Huh, S.-Y., Lee, W.: Providing ranked cooperative query answers using the metricized knowledge abstraction hierarchy. Expert Systems with Applications 32(2), 469–484 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Katsumi Inoue
    • 1
  • Lena Wiese
    • 1
  1. 1.National Institute of InformaticsChiyoda-kuJapan

Personalised recommendations