Self-management Challenges for Multi-cloud Architectures

(Invited Paper)
  • Erik Elmroth
  • Johan Tordsson
  • Francisco Hernández
  • Ahmed Ali-Eldin
  • Petter Svärd
  • Mina Sedaghat
  • Wubin Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6994)


Addressing the management challenges for a multitude of distributed cloud architectures, we focus on the three complementary cloud management problems of predictive elasticity, admission control, and placement (or scheduling) of virtual machines. As these problems are intrinsically intertwined we also propose an approach to optimize the overall system behavior by policy-tuning for the tools handling each of them. Moreover, in order to facilitate the execution of some of the management decisions, we also propose new algorithms for live migration of virtual machines with very high workload and/or over low-bandwidth networks, using techniques such as caching, compression, and prioritization of memory pages.


Autonomous cloud management proactive elasticity control admission control cloud governance scheduling placement live virtual machine migration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ali-Eldin, A., Tordsson, J., Elmroth, E.: An adaptive hybrid elasticity controller for cloud infrastructures. (2011) (submitted)Google Scholar
  2. 2.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Communications of the ACM 53(4), 50–58 (2010)CrossRefGoogle Scholar
  3. 3.
    Bobroff, N., Kochut, A., Beaty, K.: Dynamic placement of virtual machines for managing SLA violations. In: Proceedings of the 10th IEEE Symposium on Integrated Management, IM (2007)Google Scholar
  4. 4.
    Bradford, R., Kotsovinos, E., Feldmann, A., Schiöberg, H.: Live wide-area migration of virtual machines including local persistent state. In: Proceedings of the 3rd International Conference on Virtual Execution Environments (VEE 2007), pp. 169–179. ACM, New York (2007)CrossRefGoogle Scholar
  5. 5.
    Chess, D.M., Segal, A., Whalley, I.: Unity: Experiences with a Prototype Autonomic Computing System. In: ICAC 2004: Proceedings of the First International Conference on Autonomic Computing (ICAC 2004), pp. 140–147. IEEE Computer Society, Washington, DC, USA (2004)CrossRefGoogle Scholar
  6. 6.
    Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I., Warfield, A.: Live migration of virtual machines. In: Proc. 2nd ACM/USENIX Symposium on Networked Systems Design and Implementation (NSDI), pp. 273–286. ACM, New York (2005)Google Scholar
  7. 7.
    Elmroth, E., Galan, F., Henriksson, D., Perales, D.: Accounting and billing for federated cloud infrastructures. In: Proceedings of the Eighth International Conference on Grid and Cooperative Computing (GCC 2009), pp. 268–275. IEEE Computer Society Press, Los Alamitos (2009)CrossRefGoogle Scholar
  8. 8.
    Elmroth, E., Gardfjäll, P.: Design and evaluation of a decentralized system for grid-wide fairshare scheduling. In: Proceedings of the First International Conference on e-Science and Grid Computing (e-Science 2005), pp. 221–229. IEEE Computer Society Press, Los Alamitos (2005)CrossRefGoogle Scholar
  9. 9.
    Elmroth, E., Henriksson, D.: Distributed usage logging for federated grids. Future Generations Computer Systems 26(8), 1215–1225 (2010)CrossRefGoogle Scholar
  10. 10.
    Elmroth, E., Larsson, L.: Interfaces for placement, migration, and monitoring of virtual machines in federated clouds. In: Proceedings of the Eighth International Conference on Grid and Cooperative Computing (GCC 2009), pp. 253–260. IEEE Computer Society Press, Los Alamitos (2009)CrossRefGoogle Scholar
  11. 11.
    Elmroth, E., Tordsson, J.: Grid resource brokering algorithms enabling advance reservations and resource selection based on performance predictions. Future Generation Computer Systems 24(6), 585–593 (2008)CrossRefGoogle Scholar
  12. 12.
    Elmroth, E., Tordsson, J.: A standards-based grid resource brokering service supporting advance reservations, coallocation and cross-grid interoperability. Concurrency and Computation: Practice and Experience 25(18), 2298–2335 (2008)Google Scholar
  13. 13.
    Elwalid, A.I., Mitra, D.: Effective bandwidth of general Markovian traffic sources and admission control of high speed networks. IEEE/ACM Transactions on Networking 1(3), 329–343 (1993)CrossRefGoogle Scholar
  14. 14.
    Ferrer, A.J., Hernández, F., Tordsson, J., Elmroth, E., Ali-Eldin, A., Zsigri, C., Sirvent, R., Guitart, J., Badia, R.M., Djemame, K., Ziegler, W., Dimitrakos, T., Nair, S.K., Kousiouris, G., Konstanteli, K., Varvarigou, T., Hudzia, B., Kipp, A., Wesner, S., Corrales, M., Forgó, N., Sharif, T., Sheridan, C.: OPTIMIS: a holistic approach to cloud service provisioning. Future Generation Computer Systems (2011) (accepted)Google Scholar
  15. 15.
    Guerin, R., Ahmadi, H., Naghshineh, M.: Equivalent capacity and its application to bandwidth allocation in high-speed networks. IEEE J. on Selected Areas in Communications 9(7), 968–981 (1991)CrossRefGoogle Scholar
  16. 16.
    Iqbala, W., Daileya, M.N., Carrerab, D., Janeceka, P.: Adaptive resource provisioning for read intensive multi-tier applications in the cloud. Future Generation Computer Systems 27(6), 871–879 (2010)CrossRefGoogle Scholar
  17. 17.
    Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Knightly, E.W., Shroff, N.B.: Admission control for statistical QoS: Theory and practice. IEEE Network 13(2), 20–29 (1999)CrossRefGoogle Scholar
  19. 19.
    Larsson, L., Henriksson, D., Elmroth, E.: Scheduling and monitoring of internally structure services for federated cloud environments. In: Proceedings of The 16th IEEE Symposium on Computers and Communication (ICCS 2011). IEEE Computer Society, Los Alamitos (2011) (accepted)Google Scholar
  20. 20.
    Li, W., Tordsson, J., Elmroth, E.: Modelling for dynamic cloud scheduling via migration of virtual machines (2011) (submitted)Google Scholar
  21. 21.
    Liu, X., Heo, J., Sha, L., Zhu, X.: Adaptive control of multi-tiered web applications using queueing predictor. In: 10th IEEE/IFIP Network Operations and Management Symposium, pp. 106–114 (2006)Google Scholar
  22. 22.
    Malrait, L., Bouchenak, S., Marchand, N.: Experience with ConSer: A system for server control through fluid modeling. IEEE Transactions on Computers 99 (2010)Google Scholar
  23. 23.
    Massoulié, L., Roberts, J.W.: Bandwidth sharing and admission control for elastic traffic. Telecommunication Systems 15(1-2), 185–201Google Scholar
  24. 24.
    Östberg, P.-O., Elmroth, E.: Increasing flexibility and abstracting complexity in service-based grid and cloud software. In: The 1st International Conference on Cloud Computing and Services Science (CLOSER 2011), pp. 240–249. SciTePress (2011)Google Scholar
  25. 25.
    Perez, J., Germain-Renaud, C., Kégl, B., Loomis, C.: Utility-based reinforcement learning for reactive grids. In: International Conference on Autonomic Computing (ICAC 2008), pp. 205–206. IEEE, Los Alamitos (2008)CrossRefGoogle Scholar
  26. 26.
    Pueschel, T., Anandasivam, A., Buschek, S., Neumann, D.: Making Money With Clouds: Revenue Optimization Through Automated Policy Decisions. In: 17th European Conference on Information Systems (ECIS 2009), Verona, Italy, pp. 355–367 (2009)Google Scholar
  27. 27.
    Expert Group Report. The Future of Cloud Computing. European Commission, IST (2010)Google Scholar
  28. 28.
    Rochwerger, B., Breitgand, D., Epstein, A., Hadas, D., Loy, I., Nagin, K., Tordsson, J., Ragusa, C., Clayman, S., Levy, E., Maraschini, A., Massonet, P., Munoz, H., Toffetti, G., Villari, M.: RESERVOIR: When one cloud is not enough. IEEE Computer 44(3), 44–51 (2011)CrossRefGoogle Scholar
  29. 29.
    Rochwerger, B., Breitgand, D., Levy, E., Galis, A., Nagin, K., Llorente, I., Montero, R., Wolfsthal, Y., Elmroth, E., Caceres, J., Ben-Yehuda, M., Emmerich, W., Galán, F.: The RESERVOIR model and architecture for open federated cloud computing. IBM J. of Research and Development 53(4) (2009)Google Scholar
  30. 30.
    Salehi, M., Buyya, R.: Adapting Market-Oriented Scheduling Policies for Cloud Computing. In: Hsu, C.-H., Yang, L.T., Park, J.H., Yeo, S.-S. (eds.) ICA3PP 2010. LNCS, vol. 6081, pp. 351–362. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  31. 31.
    Sedaghat, M., Hernandez, F., Elmroth, E.: Unifying cloud management: Towards overall governance of business level objectives. In: Proceedings of The 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid 2011), pp. 591–597. IEEE Computer Society, Los Alamitos (2011)CrossRefGoogle Scholar
  32. 32.
    Singh, R., Sharma, U., Cecchet, E., Shenoy, P.: Autonomic mix-aware provisioning for non-stationary data center workloads. In: Proceeding of the 7th International Conference on Autonomic Computing, pp. 21–30. ACM, New York (2010)CrossRefGoogle Scholar
  33. 33.
    Son, J.D.: Optimal admission and pricing control problem with deterministic service times and sideline profit. Queueing Systems: Theory and Applications 60(1), 71–85 (2008)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Svärd, P., Hudzia, B., Tordsson, J., Elmroth, E.: Evaluation of delta compression techniques for efficient live migration of large virtual machines. In: Proceedings of the 7th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE 2011), pp. 111–120. ACM, New York (2011)Google Scholar
  35. 35.
    Svärd, P., Tordsson, J., Hudzia, B., Elmroth, E.: High performance live migration through dynamic page transfer reordering and compression (2011) (submitted)Google Scholar
  36. 36.
    Toffetti, G., Gambi, A., Pezzè, M., Pautasso, C.: Engineering autonomic controllers for virtualized web applications. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.) ICWE 2010. LNCS, vol. 6189, pp. 66–80. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  37. 37.
    Tordsson, J., Montero, R.S., Vozmediano, R.M., Llorente, I.M.: Cloud brokering mechanisms for optimized placement of virtual machines across multiple providers (2010) (submitted)Google Scholar
  38. 38.
    Travostino, F.: Seamless live migration of virtual machines over the MAN/WAN. In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. ACM, New York (2006)Google Scholar
  39. 39.
    Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P., Wood, T.: Agile dynamic provisioning of multi-tier Internet applications. ACM Trans. on Autonomous and Adaptive Systems 3(1), 1–39 (2008)CrossRefGoogle Scholar
  40. 40.
    Urgaonkar, B., Shenoy, P., Roscoe, T.: Resource overbooking and application profiling in shared hosting platforms. In: 5th Symp. on Operating Systems Design and Implementation, OSDI 2002 (2002)Google Scholar
  41. 41.
    Verma, A., Ahuja, P., Neogi, A.: pMapper: Power and migration cost aware application placement in virtualized systems. In: Issarny, V., Schantz, R. (eds.) Middleware 2008. LNCS, vol. 5346, pp. 243–264. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Erik Elmroth
    • 1
  • Johan Tordsson
    • 1
  • Francisco Hernández
    • 1
  • Ahmed Ali-Eldin
    • 1
  • Petter Svärd
    • 1
  • Mina Sedaghat
    • 1
  • Wubin Li
    • 1
  1. 1.Department of Computing ScienceUmeå UniversityUmeåSweden

Personalised recommendations