Design, Implementation, and Evaluation of the Surface_mesh Data Structure
Conference paper
Summary
We present the design, implementation, and evaluation of an efficient and easy to use data structure for polygon surface meshes. The design choices that arise during development are systematically investigated and detailed reasons for choosing one alternative over another are given. We describe our implementation and compare it to other contemporary mesh data structures in terms of usability, computational performance, and memory consumption. Our evaluation demonstrates that our new Surface_mesh data structure is easier to use, offers higher performance, and consumes less memory than several state-of-the-art mesh data structures.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Alumbaugh, T., Jiao, X.: Compact array-based mesh data structures. In: Proceedings of the 14th International Meshing Roundtable, pp. 485–504 (2005)Google Scholar
- 2.Baumgart, B.G.: Winged-edge polyhedron representation. Technical Report STAN-CS320, Computer Science Department, Stanford University (1972)Google Scholar
- 3.Blandford, D., Blelloch, G., Cardoze, D., Kadow, C.: Compact representations of simplicial meshes in two and three dimensions. In: Proceedings of the 12th International Meshing Roundtable, pp. 135–146 (2003)Google Scholar
- 4.Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., Lévy, B.: Polygon Mesh Processing. AK Peters (2010)Google Scholar
- 5.Botsch, M., Steinberg, S., Bischoff, S., Kobbelt, L.: Openmesh: A generic and efficient polygon mesh data structure. In: Proc. of OpenSG Symposium (2002)Google Scholar
- 6.Brewer, M., Freitag Diachin, L., Knupp, P., Leurent, T., Melander, D.: The Mesquite mesh quality improvement toolkit. In: Proceedings of the 12th International Meshing Roundtable, pp. 239–250 (2003)Google Scholar
- 7.Campagna, S., Kobbelt, L., Seidel, H.-P.: Directed edges: A scalable representation for triangle meshes. Journal of Graphics, GPU, and Game Tools 3(4), 1–12 (1998)Google Scholar
- 8.CGAL. Computational Geometry Algorithms Library (2011), http://www.cgal.org
- 9.Edwards, H.C., Williams, A.B., Sjaardema, G.D., Baur, D.G., Cochran, W.K.: SIERRA toolkit computational mesh conceptual model. Technical Report SAND2010-1192, Sandia National Laboratories (2010)Google Scholar
- 10.De Floriani, L., Hui, A.: Data structures for simplicial complexes: An analysis and a comparison. In: Proc. of Eurographics Symposium on Geometry Processing, Berlin, pp. 119–128 (2005)Google Scholar
- 11.De Floriani, L., Hui, A., Panozzo, D., Canino, D.: A dimension-independent data structure for simplicial complexes. In: Proceedings of the 19th International Meshing Roundtable, pp. 403–420 (2010)Google Scholar
- 12.Garimella, R.: MSTK - a flexible infrastructure library for developing mesh based applications. In: Proceedings of the 13th International Meshing Roundtable, pp. 203–212 (2004)Google Scholar
- 13.Guibas, L., Stolfi, J.: Primitives for the manipulation of general subdivisions and computation of Voronoi diagrams. ACM Transaction on Graphics 4(2), 74–123 (1985)CrossRefzbMATHGoogle Scholar
- 14.Gurung, T., Laney, D., Lindstrom, P., Rossignac, J.: SQuad: Compact representation for triangle meshes. Computer Graphics Forum 30(2), 355–364Google Scholar
- 15.Gurung, T., Luffel, M., Lindstrom, P., Rossignac, J.: LR: Compact connectivity representation for triangle meshes. ACM Trans. Graph. 30(3) (2011)Google Scholar
- 16.Hirani, A.N.: Discrete Exterior Calculus. PhD thesis, California Institute of Technology (2003)Google Scholar
- 17.Kettner, L.: Designing a data structure for polyhedral surfaces. In: Proceedings of 14th Symposium on Computational Geometry, pp. 146–154 (1998)Google Scholar
- 18.Kettner, L.: Using generic programming for designing a data structure for polyhedral surfaces. Computational Geometry – Theory and Applications 13(1), 65–90 (1999)CrossRefzbMATHGoogle Scholar
- 19.Kobbelt, L.: \(\sqrt{3}\) subdivision. In: Proceedings of ACM SIGGRAPH 2000, pp. 103–112 (2000)Google Scholar
- 20.Mantyla, M.: An Introduction to Solid Modeling. Computer Science Press, New York (1988)Google Scholar
- 21.OpenMesh (2011), http://www.openmesh.org
- 22.Seegyoung Seol, E., Shephard, M.S.: Efficient distributed mesh data structure for parallel automated adaptive analysis. Engineering with Computers 22(3), 197–213 (2006)CrossRefGoogle Scholar
- 23.Shewchuk, J.R.: Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator. In: Applied Computational Geometry: Towards Geometric Engineering, vol. 1148, pp. 203–222 (1996)Google Scholar
- 24.Shiue, L.-J., Alliez, P., Ursu, R., Kettner, L.: A tutorial on CGAL Polyhedron for subdivision algorithms. In: Symp. on Geometry Processing Course Notes (2004)Google Scholar
- 25.Sieger, D., Alliez, P., Botsch, M.: Optimizing Voronoi diagrams for polygonal finite element computations. In: Proceedings of the 19th International Meshing Roundtable, pp. 335–350 (2010)Google Scholar
- 26.Sukumar, N., Malsch, E.A.: Recent advances in the construction of polygonal finite element interpolants. Archives of Computational Methods in Engineering 13(1), 129–163 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
- 27.Tautges, T.J., Meyers, R., Merkley, K., Stimpson, C., Ernst, C.: MOAB: A mesh-oriented database. Technical Report SAND2004-1592, Sandia National Laboratories (2004)Google Scholar
- 28.Tournois, J., Alliez, P., Devillers, O.: Interleaving Delaunay refinement and optimization for 2D triangle mesh generation. In: Proceedings of the 16th International Meshing Roundtable, pp. 83–101 (2007)Google Scholar
- 29.VCGLib (2011), http://vcg.sourceforge.net/
- 30.Wicke, M., Ritchie, D., Klingner, B.M., Burke, S., Shewchuk, J.R., O’Brien, J.F.: Dynamic local remeshing for elastoplastic simulation. ACM Transaction on Graphics 29, 49:1–49:11 (2010)CrossRefGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2011