Jaal: Engineering a High Quality All-Quadrilateral Mesh Generator

  • Chaman Singh Verma
  • Tim Tautges

Summary

In this paper, we describe the implementation of an open source code (Jaal) for producing a high quality, isotropic all-quadrilateral mesh for an arbitrary complex surface geometry. Two basic steps in this process are: (1) Triangle to quad mesh conversion using Suneeta Ramaswamy’s tree matching algorithm and (2) Global mesh cleanup operation using Guy Bunin’s one-defect remeshing to reduce irregular nodes in the mesh.

These algorithms are fairly deterministic, very simple, require no input parameters, and fully automated yet produce an extremely high quality all-quadrilateral mesh (with very few 3 and 5 valence irregular nodes) for large class of problems.

Keywords

Boundary Node Steiner Point Mesh Quality Triangle Mesh Circle Packing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Canann, S., Muthukrishnan, S., Phillips, R.: Topological Improvement Procedures for Quadrilateral Finite Element Meshes. Engineering with Computers 14, 168–177 (1998)CrossRefGoogle Scholar
  3. 3.
    Daniels, J., Lizier, M., Siqueira, M., Silva, C.T., Nonato, L.G.: Template Based Quadrilateral Meshing. Computers and Graphics 35(3), 471–482 (2011); Shape Modeling International (SMI) Conference 2011CrossRefGoogle Scholar
  4. 4.
    Bommes, D., Zimmer, H., Kobbelt, L.: Mixed-Integer Quadrangulation. ACM Transactions on Graphics (TOG) 28(3) (2009), Article No. 77 (2009)Google Scholar
  5. 5.
    Bommes, D., Lempfer, T., Kobbelt, L.: Global Structure Optimization of Quadrilateral Meshes. Eurographics (2011)Google Scholar
  6. 6.
    Edmonds, J.: Paths, trees, and flowers. Canad. J. Math. 17, 449–467 (1965)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Klberer, F., Nieser, M., Polthier, K.: QuadCover Surface Parameterization using Branched Coverings. In: EUROGRAPHICS 2007, vol. 26(3) (2007)Google Scholar
  8. 8.
    Bunin, G.: Non-Local Topological Cleanup. In: 15th International Meshing Roundtable (2006)Google Scholar
  9. 9.
    Shewchuk, J.R.: Triangle: A Two dimensional quality mesh generator and Delaunay triangulator, http://www.cs.cmu.edu/~quake/triangle.html
  10. 10.
    Hormann, K., Greiner, G.: Quadrilateral Remeshing Proceedings of Vision, Modeling, and Visualization. In: Girod, B., Greiner, G., Niemann, H., Seidel, H.-P. (eds.) pp. 153–162 (2000)Google Scholar
  11. 11.
    Knupp, P.: Achieving Finite Element Mesh Quality via Optimization of the Jacobian Matrix Norm and Associated Quantities. International Journal for Numerical i Methods in Engineering 48(8), 1165–1185 (2000)CrossRefMATHGoogle Scholar
  12. 12.
    Mucha, M., Sankowski, P.: Maximum matchings in planar graphs via Gaussian elimination. In: Algorithmica (2004)Google Scholar
  13. 13.
    Dewey, M.W., Benzley, S.E., Shepherd, J.F., Staten, M.L.: Automated Quadrilateral Coarsening by Ring CollapseGoogle Scholar
  14. 14.
    Bern, M.: Quadrilateral meshing by circle packing. International Journal of Computational Geometry and Applications 7–20 (1997)Google Scholar
  15. 15.
    Staten, M., Canann, S.A.: Post Refinement Element Shape Improvement For Quadrilateral Meshes, 220 Trends in Unstructured Mesh Generation. ASME, 9–16 (1997)Google Scholar
  16. 16.
    Kulkarni, M., Paul Chew, L., Pingali, K.: Using Transactions in Delaunay Mesh Generation, https://engineering.purdue.edu/~milind/docs/wtw06-slides.pdf
  17. 17.
    Micali, S., Vazirani, V.V.: An O(v|v|c|E|) algorithm for finding maximum matching in general graphs. In: 21st Annual Symposium on Foundations of Computer Science (1980)Google Scholar
  18. 18.
    Kinney, P.: CleanUp: Improving Quadrilateral Finite Element Meshes. In: 6th International Meshing Roundtable, pp. 449–461 (1997)Google Scholar
  19. 19.
    Bern, M., Eppstein, D.: Quadrilateral Meshing by Circle packing. International Journal of Computational Geometry and Applications, 7–20 (1997)Google Scholar
  20. 20.
    Dong, S., Bremer, P.-t., Garland, M.: Spectral surface quadrangulation. ACM Transaction on Graphics 25, 1057–1066 (2006)CrossRefGoogle Scholar
  21. 21.
    Arnborg, S., Lagergren, J.: Easy Problems for Tree-Decomposable Graphs (1991), http://www.informatik.uni-trier.de/~ley/db/journals/jal/jal12.html#ArnborgLS91
  22. 22.
    Owen, S.J., Staten, M.L., Canann, S.A., Saigal, S.: Advancing Front Quadrilateral Meshing Using Triangle Transformations (1998)Google Scholar
  23. 23.
    Ramaswami, S., Ramos, P., Toussaint, G.: Converting triangulations to quadrangulations. Computational Geometry: Theory and Applications 9, 257–276 (1998)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Betual Atalay, F., Ramaswami, S., Xu, D.: Quadrilateral Meshes with Provable Angle Bounds (2011)Google Scholar
  25. 25.
    Zhou, T., Shimada, K.: An angle-based approach to two-dimensional mesh smoothing. In: Proceedings, 9th International Meshing Roundtable, pp. 373–384 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Chaman Singh Verma
    • 1
  • Tim Tautges
    • 2
  1. 1.Department of Computer SciencesUniversity of WisconsinMadisonUSA
  2. 2.Argonne National LaboratoryArgonneUSA

Personalised recommendations