The Central Insulin System and Energy Balance

  • Denovan P. Begg
  • Stephen C. WoodsEmail author
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 209)


Insulin acts throughout the body to reduce circulating energy and to increase energy storage. Within the brain, insulin produces a net catabolic effect by reducing food intake and increasing energy expenditure; this is evidenced by the hypophagia and increased brown adipose tissue sympathetic nerve activity induced by central insulin infusion. Reducing the activity of the brain insulin system via administration of insulin antibodies, receptor antisense treatment, or receptor knockdown results in hyperphagia and increased adiposity. However, despite decades of research into the role of central insulin in food intake, many questions remain to be answered, including the underlying mechanism of action.


Energy balance Food intake Glucose homeostasis Insulin Leptin NPY/AgRP POMC 


  1. Abizaid A, Horvath TL (2008) Brain circuits regulating energy homeostasis. Regul Pept 149:3–10PubMedCrossRefGoogle Scholar
  2. Accili D, Drago J, Lee EJ, Johnson MD, Cool MH, Salvatore P, Asico LD, Jose PA, Taylor SI, Westphal H (1996) Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nat Genet 12:106–109PubMedCrossRefGoogle Scholar
  3. Air EL, Benoit SC, Blake Smith KA, Clegg DJ, Woods SC (2002a) Acute third ventricular administration of insulin decreases food intake in two paradigms. Pharmacol Biochem Behav 72:423–429PubMedCrossRefGoogle Scholar
  4. Air EL, Benoit SC, Clegg DJ, Seeley RJ, Woods SC (2002b) Insulin and leptin combine additively to reduce food intake and body weight in rats. Endocrinology 143:2449–2452PubMedCrossRefGoogle Scholar
  5. Air EL, Strowski MZ, Benoit SC, Conarello SL, Salituro GM, Guan XM, Liu K, Woods SC, Zhang BB (2002c) Small molecule insulin mimetics reduce food intake and body weight and prevent development of obesity. Nat Med 8:179–183PubMedCrossRefGoogle Scholar
  6. Arase K, Fisler JS, Shargill NS, York DA, Bray GA (1988) Intracerebroventricular infusions of 3-OHB and insulin in a rat model of dietary obesity. Am J Physiol 255:R974–R981PubMedGoogle Scholar
  7. Bagdade JD, Bagdade JD (1968) Basal insulin and obesity. Lancet 2:630–631PubMedCrossRefGoogle Scholar
  8. Bagdade JD, Bierman EL, Porte D Jr (1967) The significance of basal insulin levels in the evaluation of the insulin response to glucose in diabetic and nondiabetic subjects. J Clin Invest 46:1549–1557PubMedCrossRefGoogle Scholar
  9. Banga AK, Chien YW (1988) Systemic delivery of therapeutic peptides and proteins. Int J Pharm 48:15–50CrossRefGoogle Scholar
  10. Banks WA (2004) The source of cerebral insulin. Eur J Pharmacol 490:5–12PubMedCrossRefGoogle Scholar
  11. Banks WA, Jaspan JB, Huang W, Kastin AJ (1997) Transport of insulin across the blood-brain barrier: saturability at euglycemic doses of insulin. Peptides 18:1423–1429PubMedCrossRefGoogle Scholar
  12. Banting FG, Best CH, Collip JB, Campbell WR, Fletcher AA (1922) Pancreatic extracts in the treatment of Diabetes Mellitus. Can Med Assoc J 12:141–146PubMedGoogle Scholar
  13. Barrera JG, Jones KR, Herman JP, D’Alessio DA, Woods SC, Seeley RJ (2011) Hyperphagia and increased fat accumulation in two models of chronic CNS glucagon-like peptide-1 loss of function. J Neurosci 31:3904–3913PubMedCrossRefGoogle Scholar
  14. Baskin DG, Porte D Jr, Guest K, Dorsa DM (1983a) Regional concentrations of insulin in the rat brain. Endocrinology 112:898–903PubMedCrossRefGoogle Scholar
  15. Baskin DG, Woods SC, West DB, van HM, Posner BI, Dorsa DM, Porte D Jr (1983b) Immunocytochemical detection of insulin in rat hypothalamus and its possible uptake from cerebrospinal fluid. Endocrinology 113:1818–1825PubMedCrossRefGoogle Scholar
  16. Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, Wren AM, Brynes AE, Low MJ, Ghatei MA, Cone RD, Bloom SR (2002) Gut hormone PYY(3–36) physiologically inhibits food intake. Nature 418:650–654PubMedCrossRefGoogle Scholar
  17. Baura G, Foster D, Porte D Jr, Kahn SE, Bergman RN, Cobelli C, Schwartz MW (1993) Saturable transport of insulin from plasma into the central nervous system of dogs in vivo: a mechanism for regulated insulin delivery to the brain. J Clin Invest 92:1824–1830PubMedCrossRefGoogle Scholar
  18. Belgardt BF, Brüning JC (2010) CNS leptin and insulin action in the control of energy homeostasis. Ann NY Acad Sci 1212:97–113PubMedCrossRefGoogle Scholar
  19. Benedict C, Kern W, Schultes B, Born J, Hallschmid M (2008) Differential sensitivity of men and women to anorexigenic and memory-improving effects of intranasal insulin. J Clin Endocrinol Metab 93:1339–1344PubMedCrossRefGoogle Scholar
  20. Benoit SC, Schwartz MW, Baskin DG, Woods SC, Seeley RJ (2000) CNS melanocortin system involvement in the regulation of food intake and body weight. Horm Behav 37:299–308PubMedCrossRefGoogle Scholar
  21. Benoit SC, Air EL, Coolen LM, Strauss R, Jackman A, Clegg DJ, Seeley RJ, Woods SC (2002) The catabolic action of insulin in the brain is mediated by melanocortins. J Neurosci 22:9048–9052PubMedGoogle Scholar
  22. Benoit SC, Clegg DJ, Seeley RJ, Woods SC (2004) Insulin and leptin as adiposity signals. Recent Prog Horm Res 59:267–285PubMedCrossRefGoogle Scholar
  23. Biolo G, Declan Fleming RY, Wolfe RR (1995) Physiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscle. J Clin Invest 95:811–819PubMedCrossRefGoogle Scholar
  24. Bjorntorp P (1996) The regulation of adipose tissue distribution in humans. Int J Obes Relat Metab Disord 20:291–302PubMedGoogle Scholar
  25. Bluher M, Michael MD, Peroni OD, Ueki K, Carter N, Kahn BB, Kahn CR (2002) Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev Cell 3:25–38PubMedCrossRefGoogle Scholar
  26. Brady MJ, Bourbonais FJ, Saltiel AR (1998) The activation of glycogen synthase by insulin switches from kinase inhibition to phosphatase activation during adipogenesis in 3T3-L1 cells. J Biol Chem 273:14063–14066PubMedCrossRefGoogle Scholar
  27. Brief DJ, Davis JD (1984) Reduction of food intake and body weight by chronic intraventricular insulin infusion. Brain Res Bull 12:571–575PubMedCrossRefGoogle Scholar
  28. Brown LM, Clegg DJ, Benoit SC, Woods SC (2006) Intraventricular insulin and leptin reduce food intake and body weight in C57BL/6 J mice. Physiol Behav 30:687–691CrossRefGoogle Scholar
  29. Brüning JC, Michael MD, Winnay JN, Hayashi T, Horsch D, Accili D, Goodyear LJ, Kahn CR (1998) A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell 2:559–569PubMedCrossRefGoogle Scholar
  30. Brüning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Muller-Wieland D, Kahn CR (2000) Role of brain insulin receptor in control of body weight and reproduction. Science 289:2122–2125PubMedCrossRefGoogle Scholar
  31. Bryden KS, Neil A, Mayou RA, Peveler RC, Fairburn CG, Dunger DB (1999) Eating habits, body weight, and insulin misuse. A longitudinal study of teenagers and young adults with type 1 diabetes. Diabetes Care 22:1956–1960PubMedCrossRefGoogle Scholar
  32. Byon JC, Kusari AB, Kusari J (1998) Protein-tyrosine phosphatase-1B acts as a negative regulator of insulin signal transduction. Mol Cell Biochem 182:101–108PubMedCrossRefGoogle Scholar
  33. Chavez M, Seeley RJ, Woods SC (1995a) A comparison between effects of intraventricular insulin and intraperitoneal lithium chloride on three measures sensitive to emetic agents. Behav Neurosci 109:547–550PubMedCrossRefGoogle Scholar
  34. Chavez M, Kaiyala K, Madden LJ, Schwartz MW, Woods SC (1995b) Intraventricular insulin and the level of maintained body weight in rats. Behav Neurosci 109:528–531PubMedCrossRefGoogle Scholar
  35. Chavez M, Riedy CA, van Dijk G, Woods SC (1996) Central insulin and macronutrient intake in the rat. Am J Physiol 271:R727–R731PubMedGoogle Scholar
  36. Clegg DJ, Riedy CA, Smith KA, Benoit SC, Woods SC (2003) Differential sensitivity to central leptin and insulin in male and female rats. Diabetes 52:682–687PubMedCrossRefGoogle Scholar
  37. Clegg DJ, Benoit SC, Reed JA, Woods SC, Dunn-Meynell A, Levin BE (2005) Reduced anorexic effects of insulin in obesity-prone rats fed a moderate-fat diet. Am J Physiol Regul Integr Comp Physiol 288:R981–R986PubMedCrossRefGoogle Scholar
  38. Clegg DJ, Brown LM, Woods SC, Benoit SC (2006) Gonadal hormones determine sensitivity to central leptin and insulin. Diabetes 55:978–987PubMedCrossRefGoogle Scholar
  39. Cooney GJ, Caterson ID, Newsholme EA (1985) The effect of insulin and noradrenaline on the uptake of 2-[1-14C]deoxyglucose in vivo by brown adipose tissue and other glucose-utilising tissues of the mouse. FEBS Lett 188:257–261PubMedCrossRefGoogle Scholar
  40. Corp ES, Woods SC, Porte D Jr, Dorsa DM, Figlewicz DP, Baskin DG (1986) Localization of 125I-insulin binding sites in the rat hypothalamus by quantitative autoradiography. Neurosci Lett 70:17–22PubMedCrossRefGoogle Scholar
  41. De Meyts P, Gu JL, Shymko RM, Kaplan BE, Bell GI, Whittaker J (1990) Identification of a ligand-binding region of the human insulin receptor encoded by the second exon of the gene. Mol Endocrinol 4:409–416PubMedCrossRefGoogle Scholar
  42. Deyev IE, Sohet F, Vassilenko KP, Serova OV, Popova NV, Zozulya SA, Burova EB, Houillier P, Rzhevsky DI, Berchatova AA, Murashev AN, Chugunov AO, Efremov RG, Nikol’sky NN, Bertelli E, Eladari D, Petrenko AG (2011) Insulin receptor-related receptor as an extracellular alkali sensor. Cell Metab 13:679–689PubMedCrossRefGoogle Scholar
  43. Diggs-Andrews KA, Zhang X, Song Z, Daphna-Iken D, Routh VH, Fisher SJ (2010) Brain insulin action regulates hypothalamic glucose sensing and the counterregulatory response to hypoglycemia. Diabetes 59:2271–2280PubMedCrossRefGoogle Scholar
  44. Dusserre E, Moulin P, Vidal H (2000) Differences in mRNA expression of the proteins secreted by the adipocytes in human subcutaneous and visceral adipose tissues. Biochim Biophys Acta 1500:88–96PubMedGoogle Scholar
  45. Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, Normandin D, Cheng A, Himms-Hagen J, Chan CC, Ramachandran C, Gresser MJ, Tremblay ML, Kennedy BP (1999) Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283:1544–1548PubMedCrossRefGoogle Scholar
  46. Ellacott KL, Cone RD (2004) The central melanocortin system and the integration of short- and long-term regulators of energy homeostasis. Recent Prog Horm Res 59:395–408PubMedCrossRefGoogle Scholar
  47. Elmquist JK, Coppari R, Balthasar N, Ichinose M, Lowell BB (2005) Identifying hypothalamic pathways controlling food intake, body weight, and glucose homeostasis. J Comp Neurol 493:63–71PubMedCrossRefGoogle Scholar
  48. Emond M, Schwartz GJ, Ladenheim EE, Moran TH (1999) Central leptin modulates behavioral and neural responsivity to CCK. Am J Physiol 276:R1545–R1549PubMedGoogle Scholar
  49. Emond M, Ladenheim EE, Schwartz GJ, Moran TH (2001) Leptin amplifies the feeding inhibition and neural activation arising from a gastric nutrient preload. Physiol Behav 72:123–128PubMedCrossRefGoogle Scholar
  50. Esposito DL, Li Y, Cama A, Quon MJ (2001) Tyr(612) and Tyr(632) in human insulin receptor substrate-1 are important for full activation of insulin-stimulated phosphatidylinositol 3-kinase activity and translocation of GLUT4 in adipose cells. Endocrinology 142:2833–2840PubMedCrossRefGoogle Scholar
  51. Figlewicz DP (2003) Adiposity signals and food reward: expanding the CNS roles of insulin and leptin. Am J Physiol Regul Integr Comp Physiol 284:R882–R892PubMedGoogle Scholar
  52. Fisher SJ, Brüning JC, Lannon S, Kahn CR (2005) Insulin signaling in the central nervous system is critical for the normal sympathoadrenal response to hypoglycemia. Diabetes 54:1447–1451PubMedCrossRefGoogle Scholar
  53. Foster LA, Ames NK, Emery RS (1991) Food intake and serum insulin responses to intraventricular infusions of insulin and IGF-I. Physiol Behav 50(4):745–749PubMedCrossRefGoogle Scholar
  54. Grarup N, Urhammer SA, Ek J, Albrechtsen A, Glumer C, Borch-Johnsen K, Jorgensen T, Hansen T, Pedersen O (2006) Studies of the relationship between the ENPP1 K121Q polymorphism and type 2 diabetes, insulin resistance and obesity in 7,333 Danish white subjects. Diabetologia 49:2097–2104PubMedCrossRefGoogle Scholar
  55. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269:543–546PubMedCrossRefGoogle Scholar
  56. Hallschmid M, Benedict C, Schultes B, Fehm HL, Born J, Kern W (2004) Intranasal insulin reduces body fat in men but not in women. Diabetes 53:3024–3029PubMedCrossRefGoogle Scholar
  57. Hamaguchi K, Terao H, Kusuda Y, Yamashita T, Hazoury Bahles JA, Cruz LM, Brugal VL, Jongchong WB, Yoshimatsu H, Sakata T (2004) The PC-1 Q121 allele is exceptionally prevalent in the Dominican Republic and is associated with type 2 diabetes. J Clin Endocrinol Metab 89:1359–1364PubMedCrossRefGoogle Scholar
  58. Havrankova J, Schmechel D, Roth J, Brownstein MJ (1978a) Identification of insulin in the rat brain. Proc Natl Acad Sci USA 75:5737–5741PubMedCrossRefGoogle Scholar
  59. Havrankova J, Roth J, Browstein M (1978b) Insulin receptors are widely distributed in the central nervous system of the rat. Nature 272:827–829PubMedCrossRefGoogle Scholar
  60. Havrankova J, Brownstein M, Roth J (1981) Insulin and insulin receptors in the rodent brain. Diabetologia 20:268–273PubMedCrossRefGoogle Scholar
  61. Heisler LK, Cowley MA, Kishi T, Tecott LH, Fan W, Low MJ, Smart JL, Rubinstein M, Tatro JB, Zigman JM, Cone RD, Elmquist JK (2003) Central serotonin and melanocortin pathways regulating energy homeostasis. Ann NY Acad Sci 994:169–174PubMedCrossRefGoogle Scholar
  62. Hermansen K, Davies M (2007) Does insulin detemir have a role in reducing risk of insulin-associated weight gain? Diabetes Obes Metab 9:209–217PubMedCrossRefGoogle Scholar
  63. Hermansen K, Mortensen LS (2007) Bodyweight changes associated with antihyperglycaemic agents in type 2 diabetes mellitus. Drug Saf 30:1127–1142PubMedCrossRefGoogle Scholar
  64. Hermansen K, Lund P, Clemmensen K, Breum L, Kleis Moller M, Mette Rosenfalck A, Christiansen E (2007) 3-Month results from Denmark within the globally prospective and observational study to evaluate insulin Detemir treatment in Type 1 and Type 2 Diabetes: the PREDICTIVE study. Rev Diabet Stud 4:89–97PubMedCrossRefGoogle Scholar
  65. Hill JM, Lesniak MA, Pert CB, Roth J (1986) Autoradiographic localization of insulin receptors in rat brain: prominence in olfactory and limbic areas. Neuroscience 17:1127–1138PubMedCrossRefGoogle Scholar
  66. Hill JW, Elias CF, Fukuda M, Williams KW, Berglund ED, Holland WL, Cho YR, Chuang JC, Xu Y, Choi M, Lauzon D, Lee CE, Coppari R, Richardson JA, Zigman JM, Chua S, Scherer PE, Lowell BB, Brüning JC, Elmquist JK (2010) Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility. Cell Metab 11:286–297PubMedCrossRefGoogle Scholar
  67. Horvath TL, Diano S, Sotonyi P, Heiman M, Tschop M (2001) Minireview: ghrelin and the regulation of energy balance – a hypothalamic perspective. Endocrinology 142:4163–4169PubMedCrossRefGoogle Scholar
  68. Hoyer S (1990) Brain glucose and energy metabolism during normal aging. Aging (Milano) 2:245–258Google Scholar
  69. Ikeda H, West DB, Pustek JJ, Figlewicz DP, Greenwood MR, Porte D Jr, Woods SC (1986) Intraventricular insulin reduces food intake and body weight of lean but not obese Zucker rats. Appetite 7:381–386PubMedCrossRefGoogle Scholar
  70. Jaillard T, Roger M, Galinier A, Guillou P, Benani A, Leloup C, Casteilla L, Penicaud L, Lorsignol A (2009) Hypothalamic reactive oxygen species are required for insulin-induced food intake inhibition: an NADPH oxidase-dependent mechanism. Diabetes 58:1544–1549PubMedCrossRefGoogle Scholar
  71. Joost HG (1995) Structural and functional heterogeneity of insulin receptors. Cell Signal 7:85–91PubMedCrossRefGoogle Scholar
  72. Katsoyannis PG, Tometsko A, Zalut C (1966) Insulin peptides. XII. Human insulin generation by combination of synthetic A and B chains. J Am Chem Soc 88:166–167PubMedCrossRefGoogle Scholar
  73. Kennedy BP (1999) Role of protein tyrosine phosphatase-1B in diabetes and obesity. Biomed Pharmacother 53:466–470PubMedCrossRefGoogle Scholar
  74. Kim EM, Grace MK, O’Hare E, Billington CJ, Levine AS (2002) Injection of alpha-MSH, but not beta-endorphin, into the PVN decreases POMC gene expression in the ARC. Neuroreport 13:497–500PubMedCrossRefGoogle Scholar
  75. Kitamura T, Kahn CR, Accili D (2003) Insulin receptor knockout mice. Annu Rev Physiol 65:313–332PubMedCrossRefGoogle Scholar
  76. Klaman LD, Boss O, Peroni OD, Kim JK, Martino JL, Zabolotny JM, Moghal N, Lubkin M, Kim YB, Sharpe AH, Stricker-Krongrad A, Shulman GI, Neel BG, Kahn BB (2000) Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol 20:5479–5489PubMedCrossRefGoogle Scholar
  77. Klockener T, Hess S, Belgardt BF, Paeger L, Verhagen LA, Husch A, Sohn JW, Hampel B, Dhillon H, Zigman JM, Lowell BB, Williams KW, Elmquist JK, Horvath TL, Kloppenburg P, Brüning JC (2011) High-fat feeding promotes obesity via insulin receptor/PI3K-dependent inhibition of SF-1 VMH neurons. Nat Neurosci 14:911–918PubMedCrossRefGoogle Scholar
  78. Koch C, Augustine RA, Steger J, Ganjam GK, Benzler J, Pracht C, Lowe C, Schwartz MW, Shepherd PR, Anderson GM, Grattan DR, Tups A (2010) Leptin rapidly improves glucose homeostasis in obese mice by increasing hypothalamic insulin sensitivity. J Neurosci 30:16180–16187PubMedCrossRefGoogle Scholar
  79. Konner AC, Hess S, Tovar S, Mesaros A, Sanchez-Lasheras C, Evers N, Verhagen LA, Bronneke HS, Kleinridders A, Hampel B, Kloppenburg P, Brüning JC (2011) Role for insulin signaling in catecholaminergic neurons in control of energy homeostasis. Cell Metab 13:720–728PubMedCrossRefGoogle Scholar
  80. Kulkarni RN, Brüning JC, Winnay JN, Postic C, Magnuson MA, Kahn CR (1999) Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96:329–339PubMedCrossRefGoogle Scholar
  81. Langerhans P (1869) Beiträge zur mikroskopischen Anatomie der Bauchspeicheldrüse. Gustav Lange, BerlinGoogle Scholar
  82. Large V, Peroni O, Letexier D, Ray H, Beylot M (2004) Metabolism of lipids in human white adipocyte. Diabetes Metab 30:294–309PubMedCrossRefGoogle Scholar
  83. Lattemann DF (2008) Endocrine links between food reward and caloric homeostasis. Appetite 51:452–455PubMedCrossRefGoogle Scholar
  84. Lauro D, Kido Y, Castle AL, Zarnowski MJ, Hayashi H, Ebina Y, Accili D (1998) Impaired glucose tolerance in mice with a targeted impairment of insulin action in muscle and adipose tissue. Nat Genet 20:294–298PubMedCrossRefGoogle Scholar
  85. Lawrence MC, McKern NM, Ward CW (2007) Insulin receptor structure and its implications for the IGF-1 receptor. Curr Opin Struct Biol 17:699–705PubMedCrossRefGoogle Scholar
  86. Lotter EC, Woods SC (1977) Injections of insulin and changes of body weight. Physiol Behav 18:293–297PubMedCrossRefGoogle Scholar
  87. Louvi A, Accili D, Efstratiadis A (1997) Growth-promoting interaction of IGF-II with the insulin receptor during mouse embryonic development. Dev Biol 189:33–48PubMedCrossRefGoogle Scholar
  88. MacKay EM, Calloway JW, Barnes RH (1940) Hyperalimentation in normal animals produced by protamine insulin. J Nutr 20:59–66Google Scholar
  89. Maddux BA, Goldfine ID (2000) Membrane glycoprotein PC-1 inhibition of insulin receptor function occurs via direct interaction with the receptor alpha-subunit. Diabetes 49:13–19PubMedCrossRefGoogle Scholar
  90. Marks JL, Eastman CJ (1990) Ontogeny of insulin binding in different regions of the rat brain. Dev Neurosci 12:349–358PubMedCrossRefGoogle Scholar
  91. Marks JL, Porte D Jr, Stahl WL, Baskin DG (1990) Localization of insulin receptor mRNA in rat brain by in situ hybridization. Endocrinology 127:3236CrossRefGoogle Scholar
  92. Matson CA, Wiater MF, Kuijper JL, Weigle DS (1997) Synergy between leptin and cholecystokinin (CCK) to control daily caloric intake. Peptides 18:1275–1278PubMedCrossRefGoogle Scholar
  93. Matson CA, Reid DF, Cannon TA, Ritter RC (2000) Cholecystokinin and leptin act synergistically to reduce body weight. Am J Physiol 278:R882–R890Google Scholar
  94. Matsuoka N, Patki A, Tiwari HK, Allison DB, Johnson SB, Gregersen PK, Leibel RL, Chung WK (2006) Association of K121Q polymorphism in ENPP1 (PC-1) with BMI in Caucasian and African-American adults. Int J Obes (Lond) 30:233–237CrossRefGoogle Scholar
  95. Matsuzawa Y, Shimomura I, Nakamura T, Keno Y, Tokunaga K (1994) Pathophysiology and pathogenesis of visceral fat obesity. Diabetes Res Clin Pract 24(Suppl):S111–S116PubMedCrossRefGoogle Scholar
  96. Matsuzawa Y, Shimomura I, Nakamura T, Keno Y, Kotani K, Tokunaga K (1995) Pathophysiology and pathogenesis of visceral fat obesity. Obes Res 3(Suppl 2):187S–194SPubMedGoogle Scholar
  97. McFarlane SI (2009) Insulin therapy and type 2 diabetes: management of weight gain. J Clin Hypertens (Greenwich) 11:601–607CrossRefGoogle Scholar
  98. McGowan MK, Andrews KM, Grossman SP (1992) Chronic intrahypothalamic infusions of insulin or insulin antibodies alter body weight and food intake in the rat. Physiol Behav 51:753–766PubMedCrossRefGoogle Scholar
  99. McNay EC (2007) Insulin and ghrelin: peripheral hormones modulating memory and hippocampal function. Curr Opin Pharmacol 7:628–632PubMedCrossRefGoogle Scholar
  100. Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson MA, Kahn CR (2000) Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 6:87–97PubMedGoogle Scholar
  101. Montague CT, Prins JB, Sanders L, Digby JE, O’Rahilly S (1997) Depot- and sex-specific differences in human leptin mRNA expression: implications for the control of regional fat distribution. Diabetes 46:342–347PubMedCrossRefGoogle Scholar
  102. Moran TH, Kinzig KP (2004) Gastrointestinal satiety signals. II. Cholecystokinin. Am J Physiol 286:G183–G188Google Scholar
  103. Moran TH, Ladenheim EE (2011) Adiposity signaling and meal size control. Physiol Behav 103:21–24PubMedCrossRefGoogle Scholar
  104. Morgan DO, Jarnagin K, Roth RA (1986) Purification and characterization of the receptor for insulin-like growth factor I. Biochemistry 25:5560–5564PubMedCrossRefGoogle Scholar
  105. Morgan DO, Edman JC, Standring DN, Fried VA, Smith MC, Roth RA, Rutter WJ (1987) Insulin-like growth factor II receptor as a multifunctional binding protein. Nature 329:301–307PubMedCrossRefGoogle Scholar
  106. Morrione A, Valentinis B, Xu SQ, Yumet G, Louvi A, Efstratiadis A, Baserga R (1997) Insulin-like growth factor II stimulates cell proliferation through the insulin receptor. Proc Natl Acad Sci USA 94:3777–3782PubMedCrossRefGoogle Scholar
  107. Morton GJ, Schwartz MW (2001) The NPY/AgRP neuron and energy homeostasis. Int J Obes Relat Metab Disord 25:S56–S62PubMedCrossRefGoogle Scholar
  108. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW (2006) Central nervous system control of food intake and body weight. Nature 443:289–295PubMedCrossRefGoogle Scholar
  109. Muller C, Voirol MJ, Stefanoni N, Surmely JF, Jequier E, Gaillard RC, Tappy L (1997) Effect of chronic intracerebroventricular infusion of insulin on brown adipose tissue activity in fed and fasted rats. Int J Obes Relat Metab Disord 21:562–566PubMedCrossRefGoogle Scholar
  110. Musatov S, Chen W, Pfaff DW, Mobbs CV, Yang XJ, Clegg DJ, Kaplitt MG, Ogawa S (2007) Silencing of estrogen receptor alpha in the ventromedial nucleus of hypothalamus leads to metabolic syndrome. Proc Natl Acad Sci USA 104:2501–2506PubMedCrossRefGoogle Scholar
  111. Nedungadi TP, Clegg DJ (2009) Sexual dimorphism in body fat distribution and risk for cardiovascular diseases. J Cardiovasc Transl Res 2:321–327PubMedCrossRefGoogle Scholar
  112. Niswender KD, Schwartz MW (2003) Insulin and leptin revisited: adiposity signals with overlapping physiological and intracellular signaling capabilities. Front Neuroendocrinol 24:1–10PubMedCrossRefGoogle Scholar
  113. Obici S, Feng Z, Karkanias G, Baskin DG, Rossetti L (2002) Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci 5:566–572PubMedCrossRefGoogle Scholar
  114. Petersen KF, Laurent D, Rothman DL, Cline GW, Shulman GI (1998) Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans. J Clin Invest 101:1203–1209PubMedCrossRefGoogle Scholar
  115. Plata-Salaman CR, Oomura Y (1986) Effect of intra-third ventricular administration of insulin on food intake after food deprivation. Physiol Behav 37:735–739PubMedCrossRefGoogle Scholar
  116. Plum L, Schubert M, Brüning JC (2005) The role of insulin receptor signaling in the brain. Trends Endocrinol Metab 16:59–65PubMedCrossRefGoogle Scholar
  117. Pouliot MC, Despres JP, Nadeau A, Moorjani S, Prud’Homme D, Lupien PJ, Tremblay A, Bouchard C (1992) Visceral obesity in men. Associations with glucose tolerance, plasma insulin, and lipoprotein levels. Diabetes 41:826–834PubMedCrossRefGoogle Scholar
  118. Pozefsky T, Felig P, Tobin JD, Soeldner JS, Cahill GF Jr (1969) Amino acid balance across tissues of the forearm in postabsorptive man. Effects of insulin at two dose levels. J Clin Invest 48:2273–2282PubMedCrossRefGoogle Scholar
  119. Prior RL, Smith SB (1982) Hormonal effects on partitioning of nutrients for tissue growth: role of insulin. Fed Proc 41:2545–2549PubMedGoogle Scholar
  120. Rahmouni K, Morgan DA, Morgan GM, Liu X, Sigmund CD, Mark AL, Haynes WG (2004) Hypothalamic PI3K and MAPK differentially mediate regional sympathetic activation to insulin. J Clin Invest 114:652–658PubMedGoogle Scholar
  121. Rees-Jones RW, Hendricks SA, Quarum M, Roth J (1984) The insulin receptor of rat brain is coupled to tyrosine kinase activity. J Biol Chem 249:3470–3474Google Scholar
  122. Riedy CA, Chavez M, Figlewicz DP, Woods SC (1995) Central insulin enhances sensitivity to cholecystokinin. Physiol Behav 58:755–760PubMedCrossRefGoogle Scholar
  123. Ritter RC, Slusser PG, Stone S (1981) Glucoreceptors controlling feeding and blood glucose: location in the hindbrain. Science 213:451–452PubMedCrossRefGoogle Scholar
  124. Rodriguez-Escudero I, Roelants FM, Thorner J, Nombela C, Molina M, Cid VJ (2005) Reconstitution of the mammalian PI3K/PTEN/Akt pathway in yeast. Biochem J 390:613–623PubMedCrossRefGoogle Scholar
  125. Rosenbloom AL, Giordano BP (1977) Chronic overtreatment with insulin in children and adolescents. Am J Dis Child 131:881–885PubMedGoogle Scholar
  126. Rossetti L, Giaccari A (1990) Relative contribution of glycogen synthesis and glycolysis to insulin-mediated glucose uptake. A dose-response euglycemic clamp study in normal and diabetic rats. J Clin Invest 85:1785–1792PubMedCrossRefGoogle Scholar
  127. Ryan M, Livingstone MB, Ducluzeau PH, Salle A, Genaitay M, Ritz P (2008) Is a failure to recognize an increase in food intake a key to understanding insulin-induced weight gain? Diabetes Care 31:448–450PubMedCrossRefGoogle Scholar
  128. Sanger F, Tuppy H (1951a) The amino-acid sequence in the phenylalanyl chain of insulin. I. The identification of lower peptides from partial hydrolysates. Biochem J 49:463–481PubMedGoogle Scholar
  129. Sanger F, Tuppy H (1951b) The amino-acid sequence in the phenylalanyl chain of insulin. 2. The investigation of peptides from enzymic hydrolysates. Biochem J 49:481–490PubMedGoogle Scholar
  130. Sato I, Arima H, Ozaki N, Watanabe M, Goto M, Hayashi M, Banno R, Nagasaki H, Oiso Y (2005) Insulin inhibits neuropeptide Y gene expression in the arcuate nucleus through GABAergic systems. J Neurosci 25:8657–8664PubMedCrossRefGoogle Scholar
  131. Schubert M, Gautam D, Surjo D, Ueki K, Baudler S, Schubert D, Kondo T, Alber J, Galldiks N, Kustermann E, Arndt S, Jacobs AH, Krone W, Kahn CR, Brüning JC (2004) Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci USA 101:3100–3105PubMedCrossRefGoogle Scholar
  132. Schwartz MW, Figlewicz DP, Baskin DG, Woods SC, Porte D Jr (1992) Insulin in the brain: a hormonal regulator of energy balance. Endocr Rev 13:387–414PubMedGoogle Scholar
  133. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671PubMedGoogle Scholar
  134. Seeley RJ, Woods SC (2003) Monitoring of stored and available fuel by the CNS: implications for obesity. Nat Rev Neurosci 4:901–909PubMedCrossRefGoogle Scholar
  135. Seeley RJ, Yagaloff KA, Fisher SL, Burn P, Thiele TE, van Dijk G, Baskin DG, Schwartz MW (1997) Melanocortin receptors in leptin effects. Nature 390:349PubMedCrossRefGoogle Scholar
  136. Shier P, Watt VM (1989) Primary structure of a putative receptor for a ligand of the insulin family. J Biol Chem 264:14605–14608PubMedGoogle Scholar
  137. Shiraishi J, Yanagita K, Fukumori R, Sugino T, Fujita M, Kawakami S, McMurtry JP, Bungo T (2011) Comparisons of insulin related parameters in commercial-type chicks: evidence for insulin resistance in broiler chicks. Physiol Behav 103:233–239PubMedCrossRefGoogle Scholar
  138. Standaert ML, Bandyopadhyay G, Kanoh Y, Sajan MP, Farese RV (2001) Insulin and PIP3 activate PKC-zeta by mechanisms that are both dependent and independent of phosphorylation of activation loop (T410) and autophosphorylation (T560) sites. Biochemistry 40:249–255PubMedCrossRefGoogle Scholar
  139. Stephan F, Reville P, Thierry R, Schlienger JL (1972) Correlations between plasma insulin and body weight in obesity, anorexia nervosa and diabetes mellitus. Diabetologia 8:196–201PubMedCrossRefGoogle Scholar
  140. Stockhorst U, de Fries D, Steingrueber HJ, Scherbaum WA (2004) Insulin and the CNS: effects on food intake, memory, and endocrine parameters and the role of intranasal insulin administration in humans. Physiol Behav 83:47–54PubMedGoogle Scholar
  141. Stockhorst U, Huenig A, Ziegler D, Scherbaum W (2011) Unconditioned and conditioned effects of intravenous insulin and glucose on heart rate variability in healthy men. Physiol Behav 103:31–38PubMedCrossRefGoogle Scholar
  142. Strubbe JH, Mein CG (1977) Increased feeding in response to bilateral injection of insulin antibodies in the VMH. Physiol Behav 19:309–313PubMedCrossRefGoogle Scholar
  143. Su X, Lodhi IJ, Saltiel AR, Stahl PD (2006) Insulin-stimulated Interaction between insulin receptor substrate 1 and p85alpha and activation of protein kinase B/Akt require Rab5. J Biol Chem 281:27982–27990PubMedCrossRefGoogle Scholar
  144. Swann JP (1986) Insulin: a case study in the emergence of collaborative pharmacomedical research. Pharm Hist 28:65–74PubMedGoogle Scholar
  145. Tang-Christensen M, Larsen PJ, Goke R, Fink-Jensen A, Jessop DS, Moller M, Sheikh SP (1996) Central administration of GLP-1-(7-36) amide inhibits food and water intake in rats. Am J Physiol 271:R848–R856PubMedGoogle Scholar
  146. Tschöp M, Smiley DL, Heiman ML (2000) Ghrelin induces adiposity in rodents. Nature 407:908–913PubMedCrossRefGoogle Scholar
  147. Turton MD, O’Shea D, Gunn I, Beak SA, Edwards CM, Meeran K, Choi SJ, Taylor GM, Heath MM, Lambert PD, Wilding JP, Smith DM, Ghatei MA, Herbert J, Bloom SR (1996) A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379:69–72PubMedCrossRefGoogle Scholar
  148. Ullrich A, Gray A, Tam AW, Yang-Feng T, Tsubokawa M, Collins C, Henzel W, Le Bon T, Kathuria S, Chen E et al (1986) Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J 5:2503–2512PubMedGoogle Scholar
  149. van der Heide LP, Ramakers GM, Smidt MP (2006) Insulin signaling in the central nervous system: learning to survive. Prog Neurobiol 79:205–221PubMedCrossRefGoogle Scholar
  150. van Houten M, Posner BI (1979) Insulin binds to brain blood vessels in vivo. Nature 282:623–625PubMedCrossRefGoogle Scholar
  151. van Houten M, Posner BI, Kopriwa BM, Brawer JR (1979) Insulin-binding sites in the rat brain: in vivo localization to the circumventricular organs by quantitative radioautography. Endocrinology 105:666–673PubMedCrossRefGoogle Scholar
  152. van Houten M, Posner BI, Kopriwa BM, Brawer JR (1980) Insulin binding sites localized to nerve terminals in rat median eminence and arcuate nucleus. Science 207:1081–1083PubMedCrossRefGoogle Scholar
  153. Volvin P, Chambaut AM, Eboue Bonis D, Clauser H, Brinkhoff O, Bremer H, Meienhofer J, Zahn H (1964) Biological activity of natural and synthetic Insulin A-chain preparations on the isolated rat diaphragm. Nature 203:408–409PubMedCrossRefGoogle Scholar
  154. von Mering JV, Minkowski O (1889) Diabetes Mellitus nach Pankreasextirpation. Zentralblatt Klin Med 10:393–394Google Scholar
  155. Wang P, Mariman E, Renes J, Keijer J (2008) The secretory function of adipocytes in the physiology of white adipose tissue. J Cell Physiol 216:3–13PubMedCrossRefGoogle Scholar
  156. Wang R, Zhou D, Xi B, Ge X, Zhu P, Wang B, Zhou M, Huang Y, Liu J, Yu Y, Wang C (2011) ENPP1/PC-1 gene K121Q polymorphism is associated with obesity in European adult populations: evidence from a meta-analysis involving 24,324 subjects. Biomed Environ Sci 24:200–206PubMedGoogle Scholar
  157. Woods SC (1990) On blood glucose and eating. Intl J Obesity 14:33–34Google Scholar
  158. Woods SC (1991) The eating paradox: how we tolerate food. Psychol Rev 98:488–505PubMedCrossRefGoogle Scholar
  159. Woods SC (2004) Gastrointestinal satiety signals I. An overview of gastrointestinal signals that influence food intake. Am J Physiol 286:G7–G13Google Scholar
  160. Woods SC (2009) The control of food intake: behavioral versus molecular perspectives. Cell Metab 9:489–498PubMedCrossRefGoogle Scholar
  161. Woods SC, D’Alessio DA (2008) Central control of body weight and appetite. J Clin Endocrinol Metab 93:S37–S50PubMedCrossRefGoogle Scholar
  162. Woods SC, Porte D Jr (1976) Insulin and the set-point regulation of body weight. In: Hunger: basic mechanisms and clinical implications. Raven, New York, pp 273–280Google Scholar
  163. Woods SC, Seeley RJ (2001) Insulin as an adiposity signal. Int J Obes Relat Metab Disord 25:S35–S38PubMedCrossRefGoogle Scholar
  164. Woods SC, Lotter EC, McKay LD, Porte D Jr (1979) Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 282:503–505PubMedCrossRefGoogle Scholar
  165. Woods SC, Seeley RJ, Porte D Jr, Schwartz MW (1998) Signals that regulate food intake and energy homeostasis. Science 280:1378–1383PubMedCrossRefGoogle Scholar
  166. Woods SC, Schwartz MW, Baskin DG, Seeley RJ (2000) Food intake and the regulation of body weight. Annu Rev Psychol 51:255–277PubMedCrossRefGoogle Scholar
  167. Wren AM, Small CJ, Ward HL, Murphy KG, Dakin CL, Taheri S, Kennedy AR, Roberts GH, Morgan DG, Ghatei MA, Bloom SR (2000) The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 141:4325–4328PubMedCrossRefGoogle Scholar
  168. Yki-Jarvinen H, Helve E, Sane T, Nurjhan N, Taskinen MR (1989) Insulin inhibition of overnight glucose production and gluconeogenesis from lactate in NIDDM. Am J Physiol 256:E732–E739PubMedGoogle Scholar
  169. Young WSI, Kuhar MJ, Roth J, Brownstein MJ (1980) Radiohistochemical localization of insulin receptors in the adult and developing rat brain. Neuropeptides 1:15–22CrossRefGoogle Scholar
  170. Zib I, Raskin P (2006) Novel insulin analogues and its mitogenic potential. Diabetes Obes Metab 8:611–620PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Psychiatry and Behavioral NeuroscienceUniversity of CincinnatiCincinnatiUSA
  2. 2.Department of MedicineUniversity of MelbourneMelbourneAustralia

Personalised recommendations