Intestinal Microbiota and Obesity

  • Michael BlautEmail author
  • Susanne Klaus
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 209)


The human gut harbors a highly diverse microbial ecosystem of approximately 400 different species, which is characterized by a high interindividual variability. The intestinal microbiota has recently been suggested to contribute to the development of obesity and the metabolic syndrome. Transplantation of gut microbiota from obese mice to nonobese, germ-free mice resulted in transfer of metabolic syndrome–associated features from the donor to the recipient. Proposed mechanisms for the role of gut microbiota include the provision of additional energy by the conversion of dietary fiber to short-chain fatty acids, effects on gut-hormone production, and increased intestinal permeability causing elevated systemic levels of lipopolysaccharides (LPS). This metabolic endotoxemia is suggested to contribute to low-grade inflammation, a characteristic trait of obesity and the metabolic syndrome. Finally, activation of the endocannabinoid system by LPS and/or high-fat diets is discussed as another causal factor. In conclusion, there is ample evidence for a role of gut microbiota in the development of obesity in rodents. However, the magnitude of its contribution to human obesity is still unknown.


Bifidobacteria Diet Endotoxemia Energy harvest Intestinal microbiota Low-grade inflammation Metabolic syndrome Obesity 


  1. Aronsson L, Huang Y, Parini P et al (2010) Decreased fat storage by Lactobacillus paracasei is associated with increased levels of angiopoietin-like 4 protein (ANGPTL4). PLoS One 5:e13087. doi: doi:10.1371/journal.pone.0013087 CrossRefGoogle Scholar
  2. Artmann A, Petersen G, Hellgren LI et al (2008) Influence of dietary fatty acids on endocannabinoid and N-acylethanolamine levels in rat brain, liver and small intestine. Biochim Biophys Acta 1781:200–212PubMedGoogle Scholar
  3. Backhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101:15718–15723PubMedCrossRefGoogle Scholar
  4. Backhed F, Manchester JK, Semenkovich CF et al (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 104:979–984PubMedCrossRefGoogle Scholar
  5. Bluher M, Engeli S, Kloting N et al (2006) Dysregulation of the peripheral and adipose tissue endocannabinoid system in human abdominal obesity. Diabetes 55:3053–3060PubMedCrossRefGoogle Scholar
  6. Cani PD, Delzenne NM (2009) The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des 15:1546–1558PubMedCrossRefGoogle Scholar
  7. Cani PD, Amar J, Iglesias MA et al (2007a) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772PubMedCrossRefGoogle Scholar
  8. Cani PD, Neyrinck AM, Fava F et al (2007b) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50:2374–2383PubMedCrossRefGoogle Scholar
  9. Cani PD, Bibiloni R, Knauf C et al (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57:1470–1481PubMedCrossRefGoogle Scholar
  10. Cani PD, Possemiers S, Van de Wiele T et al (2009) Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58:1091–1103PubMedCrossRefGoogle Scholar
  11. Cazes A, Galaup A, Chomel C et al (2006) Extracellular matrix-bound angiopoietin-like 4 inhibits endothelial cell adhesion, migration, and sprouting and alters actin cytoskeleton. Circ Res 99:1207–1215PubMedCrossRefGoogle Scholar
  12. Creely SJ, McTernan PG, Kusminski CM et al (2007) Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab 292:E740–747PubMedCrossRefGoogle Scholar
  13. D'Eon TM, Pierce KA, Roix JJ et al (2008) The role of adipocyte insulin resistance in the pathogenesis of obesity-related elevations in endocannabinoids. Diabetes 57:1262–1268PubMedCrossRefGoogle Scholar
  14. Desai U, Lee EC, Chung K et al (2007) Lipid-lowering effects of anti-angiopoietin-like 4 antibody recapitulate the lipid phenotype found in angiopoietin-like 4 knockout mice. Proc Natl Acad Sci USA 104:11766–11771PubMedCrossRefGoogle Scholar
  15. Di Marzo V, Goparaju SK, Wang L et al (2001) Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410:822–825PubMedCrossRefGoogle Scholar
  16. Duncan SH, Lobley GE, Holtrop G et al (2008) Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond) 32:1720–1724CrossRefGoogle Scholar
  17. Eckburg PB, Bik EM, Bernstein CN et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638PubMedCrossRefGoogle Scholar
  18. Erridge C, Attina T, Spickett CM et al (2007) A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr 86:1286–1292PubMedGoogle Scholar
  19. Ewaschuk JB, Diaz H, Meddings L et al (2008) Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am J Physiol Gastrointest Liver Physiol 295:G1025–1034PubMedCrossRefGoogle Scholar
  20. Finegold SM, Sutter VL, Mathisen GE (1983) Normal indigenous intestinal flora. In: Hentges DJ (ed) Human intestinal microflora in health and disease. Academic, New York/London, pp 3–31Google Scholar
  21. Fleissner CK, Huebel N, Abd El-Bary MM et al (2010) Absence of intestinal microbiota does not protect mice from diet-induced obesity. Br J Nutr 104:919–929PubMedCrossRefGoogle Scholar
  22. Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770PubMedCrossRefGoogle Scholar
  23. Gibson GR, Beatty ER, Wang X et al (1995) Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108:975–982PubMedCrossRefGoogle Scholar
  24. Griffiths EA, Duffy LC, Schanbacher FL et al (2004) In vivo effects of bifidobacteria and lactoferrin on gut endotoxin concentration and mucosal immunity in Balb/c mice. Dig Dis Sci 49:579–589PubMedCrossRefGoogle Scholar
  25. Hildebrandt MA, Hoffmann C, Sherrill-Mix SA et al (2009) High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137:1716–1724PubMedCrossRefGoogle Scholar
  26. Hooper LV, Wong MH, Thelin A et al (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881–884PubMedCrossRefGoogle Scholar
  27. Hotamisligil GS, Erbay E (2008) Nutrient sensing and inflammation in metabolic diseases. Nat Rev Immunol 8:923–934PubMedCrossRefGoogle Scholar
  28. Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91PubMedCrossRefGoogle Scholar
  29. Isken F, Klaus S, Osterhoff M et al (2010) Effects of long-term soluble vs. insoluble dietary fiber intake on high-fat diet-induced obesity in C57BL/6J mice. J Nutr Biochem 21:278–284PubMedCrossRefGoogle Scholar
  30. Kersten S, Mandard S, Tan NS et al (2000) Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. J Biol Chem 275:28488–28493PubMedCrossRefGoogle Scholar
  31. Kim I, Kim HG, Kim H et al (2000) Hepatic expression, synthesis and secretion of a novel fibrinogen/angiopoietin-related protein that prevents endothelial-cell apoptosis. Biochem J 346(Pt 3):603–610PubMedCrossRefGoogle Scholar
  32. Kim HK, Youn BS, Shin MS et al (2010) Hypothalamic Angptl4/Fiaf is a novel regulator of food intake and body weight. Diabetes 59:2772–2780PubMedCrossRefGoogle Scholar
  33. Kitchens RL (2000) Role of CD14 in cellular recognition of bacterial lipopolysaccharides. Chem Immunol 74:61–82PubMedCrossRefGoogle Scholar
  34. Kleessen B, Hartmann L, Blaut M (2001) Oligofructose and long-chain inulin: influence on the gut microbial ecology of rats associated with a human faecal flora. Br J Nutr 86:291–300PubMedCrossRefGoogle Scholar
  35. Kondo S, Xiao JZ, Satoh T et al (2010) Antiobesity effects of Bifidobacterium breve strain B-3 supplementation in a mouse model with high-fat diet-induced obesity. Biosci Biotechnol Biochem 74:1656–1661PubMedCrossRefGoogle Scholar
  36. Kushner RF, Choi SW (2010) Prevalence of unhealthy lifestyle patterns among overweight and obese adults. Obesity 18:1160–1167PubMedCrossRefGoogle Scholar
  37. Le Jan S, Amy C, Cazes A et al (2003) Angiopoietin-like 4 is a proangiogenic factor produced during ischemia and in conventional renal cell carcinoma. Am J Pathol 162:1521–1528PubMedCrossRefGoogle Scholar
  38. Ley RE, Backhed F, Turnbaugh P et al (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102:11070–11075PubMedCrossRefGoogle Scholar
  39. Ley RE, Turnbaugh PJ, Klein S et al (2006a) Human gut microbes associated with obesity. Nature 444:1022–1023PubMedCrossRefGoogle Scholar
  40. Ley RE, Peterson DA, Gordon JI (2006b) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848PubMedCrossRefGoogle Scholar
  41. Lichtenstein L, Kersten S (2010) Modulation of plasma TG lipolysis by Angiopoietin-like proteins and GPIHBP1. Biochim Biophys Acta 1801:415–420PubMedGoogle Scholar
  42. Liu J, Batkai S, Pacher P et al (2003) Lipopolysaccharide induces anandamide synthesis in macrophages via CD14/MAPK/phosphoinositide 3-kinase/NF-kappaB independently of platelet-activating factor. J Biol Chem 278:45034–45039PubMedCrossRefGoogle Scholar
  43. Maccarrone M, Gasperi V, Catani MV et al (2010) The endocannabinoid system and its relevance for nutrition. Annu Rev Nutr 30:423–440PubMedCrossRefGoogle Scholar
  44. Maczulak AE, Wolin MJ, Miller TL (1993) Amounts of viable anaerobes, methanogens, and bacterial fermentation products in feces of rats fed high-fiber or fiber-free diets. Appl Environ Microbiol 59:657–662PubMedGoogle Scholar
  45. Mandard S, Zandbergen F, van Straten E et al (2006) The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. J Biol Chem 281:934–944PubMedCrossRefGoogle Scholar
  46. McNeil NI (1984) The contribution of the large intestine to energy supplies in man. Am J Clin Nutr 39:338–342PubMedGoogle Scholar
  47. Muccioli GG, Naslain D, Backhed F et al (2010) The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol 6:392PubMedCrossRefGoogle Scholar
  48. Murphy EF, Cotter PD, Healy S et al (2010) Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut 59:1635–1642PubMedCrossRefGoogle Scholar
  49. Norris LE, Collene AL, Asp ML et al (2009) Comparison of dietary conjugated linoleic acid with safflower oil on body composition in obese postmenopausal women with type 2 diabetes mellitus. Am J Clin Nutr 90:468–476PubMedCrossRefGoogle Scholar
  50. Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65PubMedCrossRefGoogle Scholar
  51. Ravinet Trillou C, Delgorge C, Menet C et al (2004) CB1 cannabinoid receptor knockout in mice leads to leanness, resistance to diet-induced obesity and enhanced leptin sensitivity. Int J Obes Relat Metab Disord 28:640–648PubMedCrossRefGoogle Scholar
  52. Samuel BS, Gordon JI (2006) A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc Natl Acad Sci USA 103:10011–10016PubMedCrossRefGoogle Scholar
  53. Samuel BS, Shaito A, Motoike T et al (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci USA 105:16767–16772PubMedCrossRefGoogle Scholar
  54. Scherer T, Buettner C (2009) The dysregulation of the endocannabinoid system in diabesity-a tricky problem. J Mol Med 87:663–668PubMedCrossRefGoogle Scholar
  55. Schwiertz A, Taras D, Schafer K et al (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 18:190–195CrossRefGoogle Scholar
  56. Stappenbeck TS, Hooper LV, Gordon JI (2002) Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci USA 99:15451–15455PubMedCrossRefGoogle Scholar
  57. Tazoe H, Otomo Y, Kaji I et al (2008) Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J Physiol Pharmacol 59(Suppl 2):251–262PubMedGoogle Scholar
  58. Turnbaugh PJ, Ley RE, Mahowald MA et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031PubMedCrossRefGoogle Scholar
  59. Turnbaugh PJ, Backhed F, Fulton L et al (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213–223PubMedCrossRefGoogle Scholar
  60. Turnbaugh PJ, Ridaura VK, Faith JJ, et al. (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6ra14. doi: 1/6/6ra14Google Scholar
  61. Vijay-Kumar M, Aitken JD, Carvalho FA et al (2010) Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science 328:228–231PubMedCrossRefGoogle Scholar
  62. Voshol PJ, Rensen PC, van Dijk KW et al (2009) Effect of plasma triglyceride metabolism on lipid storage in adipose tissue: studies using genetically engineered mouse models. Biochim Biophys Acta 1791:479–485PubMedGoogle Scholar
  63. Wang Z, Xiao G, Yao Y et al (2006) The role of bifidobacteria in gut barrier function after thermal injury in rats. J Trauma 61:650–657PubMedCrossRefGoogle Scholar
  64. Wren AM, Bloom SR (2007) Gut hormones and appetite control. Gastroenterology 132:2116–2130PubMedCrossRefGoogle Scholar
  65. Xiong Y, Miyamoto N, Shibata K et al (2004) Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci USA 101:1045–1050PubMedCrossRefGoogle Scholar
  66. Yau MH, Wang Y, Lam KS et al (2009) A highly conserved motif within the NH2-terminal coiled-coil domain of angiopoietin-like protein 4 confers its inhibitory effects on lipoprotein lipase by disrupting the enzyme dimerization. J Biol Chem 284:11942–11952PubMedCrossRefGoogle Scholar
  67. Yoon JC, Chickering TW, Rosen ED et al (2000) Peroxisome proliferator-activated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Mol Cell Biol 20:5343–5349PubMedCrossRefGoogle Scholar
  68. Zhou J, Martin RJ, Tulley RT et al (2008) Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. Am J Physiol Endocrinol Metab 295:E1160–1166PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Gastrointestinal MicrobiologyGerman Institute of Human Nutrition Potsdam-RehbrueckeNuthetalGermany
  2. 2.Research Group Physiology of Energy MetabolismGerman Institute of Human Nutrition Potsdam-RehbrueckeNuthetalGermany

Personalised recommendations