Using Tag Recommendations to Homogenize Folksonomies in Microblogging Environments

  • Eva Zangerle
  • Wolfgang Gassler
  • Günther Specht
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6984)


Microblogging applications such as Twitter are experiencing tremendous success. Twitter users use hashtags to categorize posted messages which aim at bringing order to the chaos of the Twittersphere. However, the percentage of messages including hashtags is very small and the used hashtags are very heterogeneous as hashtags may be chosen freely and may consist of any arbitrary combination of characters. This heterogeneity and the lack of use of hashtags lead to significant drawbacks in regards of the search functionality as messages are not categorized in a homogeneous way. In this paper we present an approach for the recommendation of hashtags suitable for the tweet the user currently enters which aims at creating a more homogeneous set of hashtags. Furthermore, users are encouraged to using hashtags as they are provided with suitable recommendations for hashtags.


Recommender System Ranking Method Input String Twitter User Ranking Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)CrossRefGoogle Scholar
  2. 2.
    Ames, M., Naaman, M.: Why we tag: motivations for annotation in mobile and online media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2007, pp. 971–980. ACM, New York (2007)CrossRefGoogle Scholar
  3. 3.
    Balabanović, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Commun. ACM 40, 66–72 (1997)CrossRefGoogle Scholar
  4. 4.
    Boyd, D., Golder, S., Lotan, G.: Tweet, tweet, retweet: Conversational aspects of retweeting on twitter. In: HICSS, pp. 1–10. IEEE Computer Society, Los Alamitos (1899)Google Scholar
  5. 5.
    Chen, J., Nairn, R., Nelson, L., Bernstein, M., Chi, E.: Short and tweet: experiments on recommending content from information streams. In: Proceedings of the 28th International Conference on Human Factors in Computing Systems, pp. 1185–1194. ACM, New York (2010)Google Scholar
  6. 6.
    Garg, N., Weber, I.: Personalized, interactive tag recommendation for flickr. In: Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys 2008, pp. 67–74. ACM, New York (2008)CrossRefGoogle Scholar
  7. 7.
    Gassler, W., Zangerle, E., Specht, G.: The Snoopy Concept: Fighting Heterogeneity in Semistructured and Collaborative Information Systems by using Recommendations. In: The 2011 International Conference on Collaboration Technologies and Systems (CTS 2011), Philadelphia, PE (May 2011)Google Scholar
  8. 8.
    Hannon, J., Bennett, M., Smyth, B.: Recommending twitter users to follow using content and collaborative filtering approaches. In: RecSys 2010: Proceedings of the Fourth ACM Conference on Recommender Systems, pp. 199–206. ACM, New York (2010)Google Scholar
  9. 9.
    Honeycutt, C., Herring, S.C.: Beyond Microblogging: Conversation and Collaboration via Twitter. In: HICSS, pp. 1–10. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  10. 10.
    Huberman, B., Romero, D., Wu, F.: Social networks that matter: Twitter under the microscope. First Monday 14(1), 8 (2009)Google Scholar
  11. 11.
    Jäschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag Recommendations in Folksonomies. In: Kok, J., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 506–514. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: understanding microblogging usage and communities. In: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, pp. 56–65. ACM, New York (2007)Google Scholar
  13. 13.
    Krishnamurthy, B., Gill, P., Arlitt, M.: A few chirps about twitter. In: Proceedings of the First Workshop on Online Social Networks, pp. 19–24. ACM, New York (2008)CrossRefGoogle Scholar
  14. 14.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In: Proceedings of the 19th International Conference on World Wide Web, pp. 591–600. ACM, New York (2010)Google Scholar
  15. 15.
    Lipczak, M., Milios, E.: Learning in efficient tag recommendation. In: Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys 2010, pp. 167–174. ACM, New York (2010)Google Scholar
  16. 16.
    Marlow, C., Naaman, M., Boyd, D., Davis, M.: HT06, tagging paper, taxonomy, Flickr, academic article, to read. In: Proceedings of the Seventeenth Conference on Hypertext and Hypermedia, HT 2006, pp. 31–40. ACM, New York (2006)Google Scholar
  17. 17.
    Pazzani, M., Billsus, D.: Content-Based Recommendation Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Phelan, O., McCarthy, K., Smyth, B.: Using twitter to recommend real-time topical news. In: Proceedings of the Third ACM Conference on Recommender Systems, pp. 385–388. ACM, New York (2009)Google Scholar
  19. 19.
    Rae, A., Sigurbjörnsson, B., van Zwol, R.: Improving tag recommendation using social networks. In: Adaptivity, Personalization and Fusion of Heterogeneous Information, RIAO 2010, Paris, France, pp. 92–99. Le Centre de Hautes Etudes Internationales d’Informatique Documentaire (2010)Google Scholar
  20. 20.
    Resnick, P., Varian, H.: Recommender systems. Communications of the ACM 40(3), 58 (1997)CrossRefGoogle Scholar
  21. 21.
    Romero, D.M., Meeder, B., Kleinberg, J.M.: Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In: Srinivasan, S., Ramamritham, K., Kumar, A., Ravindra, M.P., Bertino, E., Kumar, R. (eds.) WWW, pp. 695–704. ACM, New York (2011)Google Scholar
  22. 22.
    Sen, S., Vig, J., Riedl, J.: Tagommenders: connecting users to items through tags. In: Proceedings of the 18th International Conference on World Wide Web, WWW 2009, pp. 671–680. ACM, New York (2009)Google Scholar
  23. 23.
    Sigurbjörnsson, B., Van Zwol, R.: Flickr tag recommendation based on collective knowledge. In: Proceeding of the 17th International Conference on World Wide Web, pp. 327–336. ACM, New York (2008)CrossRefGoogle Scholar
  24. 24.
    Tatu, M., Srikanth, M., D’Silva, T.: RSDC 2008: Tag Recommendations using Bookmark Content. In: Workshop at 18th Europ. Conf. on Machine Learning (ECML 2008)/11th Europ. Conf. on Principles and Practice of Knowledge Discovery in Databases, PKDD 2008 (2008)Google Scholar
  25. 25.
    Ye, S., Wu, S.F.: Measuring Message Propagation and Social Influence on In: Bolc, L., Makowski, M., Wierzbicki, A. (eds.) SocInfo 2010. LNCS, vol. 6430, pp. 216–231. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Eva Zangerle
    • 1
  • Wolfgang Gassler
    • 1
  • Günther Specht
    • 1
  1. 1.Databases and Information Systems, Institute of Computer ScienceUniversity of InnsbruckAustria

Personalised recommendations