Advertisement

The First Automated Negotiating Agents Competition (ANAC 2010)

  • Tim Baarslag
  • Koen Hindriks
  • Catholijn Jonker
  • Sarit Kraus
  • Raz Lin
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 383)

Abstract

Motivated by the challenges of bilateral negotiations between people and automated agents we organized the first automated negotiating agents competition (ANAC 2010). The purpose of the competition is to facilitate the research in the area bilateral multi-issue closed negotiation. The competition was based on the Genius environment, which is a General Environment for Negotiation with Intelligent multi-purpose Usage Simulation. The first competition was held in conjunction with the Ninth International Conference on Autonomous Agents and Multiagent Systems (AAMAS-10) and was comprised of seven teams. This paper presents an overview of the competition, as well as general and contrasting approaches towards negotiation strategies that were adopted by the participants of the competition. Based on analysis in post–tournament experiments, the paper also attempts to provide some insights with regard to effective approaches towards the design of negotiation strategies.

Keywords

Discount Factor Multiagent System Autonomous Agent Negotiation Strategy Negotiation Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    An, B., Lesser, V.: Yushu: a heuristic-based agent for automated negotiating competition. In: Ito, T., et al. (eds.) New Trends in Agent-Based Complex Automated Negotiations. SCI, vol. 383, pp. 145–149. Springer, Heidelberg (2011)Google Scholar
  2. 2.
    Aumann, R.J., Hart, S. (eds.): Handbook of Game Theory with Economic Applications, March 1992. Handbook of Game Theory with Economic Applications, vol. 1. Elsevier, Amsterdam (1992)MATHGoogle Scholar
  3. 3.
    Max, H.: Bazerman and Margaret A. Neale. Negotiator rationality and negotiator cognition: The interactive roles of prescriptive and descriptive research. In: Young, H.P. (ed.) Negotiation Analysis, pp. 109–130. The University of Michigan Press (1992)Google Scholar
  4. 4.
    Coehoorn, R.M., Jennings, N.R.: Learning an opponent’s preferences to make effective multi-issue negotiation tradeoffs (2004)Google Scholar
  5. 5.
    Gerding, E.H., Williams, C.R., Robu, V., Jennings, N.R.: Iamhaggler: A negotiation agent for complex environments. In: Ito, T., et al. (eds.) New Trends in Agent-Based Complex Automated Negotiations. SCI, vol. 383, pp. 151–158. Springer, Heidelberg (2011)Google Scholar
  6. 6.
    Diniz da Costa, A., de Lucena, C.J.P., Torres da Silva, V., Azevedo, S.C., Soares, F.A.: Art Competition: Agent Designs to Handle Negotiation Challenges. In: Falcone, R., Barber, S.K., Sabater-Mir, J., Singh, M.P. (eds.) Trust 2008. LNCS (LNAI), vol. 5396, pp. 244–272. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Erev, I., Roth, A.: Predicting how people play games: Reinforcement learning in experimental games with unique, mixed strategy equilibrium. American Economic Review 88(4), 848–881 (1998)Google Scholar
  8. 8.
    Faratin, P., Sierra, C., Jennings, N.R.: Negotiation decision functions for autonomous agents. Int. Journal of Robotics and Autonomous Systems 24(3-4), 159–182 (1998)CrossRefGoogle Scholar
  9. 9.
    Faratin, P., Sierra, C., Jennings, N.R.: Using similarity criteria to make negotiation trade-offs. Journal of Artificial Intelligence 142(2), 205–237 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Shaheen, S.: Fatima, Michael Wooldridge, and Nicholas R. Jennings. Multi-issue negotiation under time constraints. In: AAMAS 2002: Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 143–150. ACM Press, New York (2002)Google Scholar
  11. 11.
    Fullam, K.K., Klos, T.B., Muller, G., Sabater, J., Schlosser, A., Barber, K.S., Rosenschein, J.S., Vercouter, L., Voss, M.: A specification of the agent reputation and trust (art) testbed: experimentation and competition for trust in agent societies. In: The 4th International Joint Conference on Autonomous Agents and Multi Agent Systems (AAMAS), pp. 512–518. ACM Press (2005)Google Scholar
  12. 12.
    Greenwald, A., Stone, P.: Autonomous bidding agents in the trading agent competition. IEEE Internet Computing 5(2), 52–60 (2001)CrossRefGoogle Scholar
  13. 13.
    Hindriks, K., Tykhonov, D.: Towards a quality assessment method for learning preference profiles in negotiation (2008)Google Scholar
  14. 14.
    Ito, T., Hattori, H., Klein, M.: Multi-issue negotiation protocol for agents: Exploring nonlinear utility spaces (2007)Google Scholar
  15. 15.
    Jonker, C.M., Robu, V., Treur, J.: An agent architecture for multi-attribute negotiation using incomplete preference information. Journal of Autonomous Agents and Multi-Agent Systems 15(2), 221–252 (2007)CrossRefGoogle Scholar
  16. 16.
    Keeney, R.L., Raiffa, H. (eds.): Decisions with Mutliple Objectives. Cambridge University Press (1976)Google Scholar
  17. 17.
    Kersten, G.E., Noronha, S.J.: Rational agents, contract curves, and inefficient compromises report. In: Working papers, International Institute for Applied Systems Analysis (1997)Google Scholar
  18. 18.
    Kersten, G.E., Zhang, G.: Mining inspire data for the determinants of successful internet negotiations. InterNeg Research Papers INR 04/01 Central European Journal of Operational Research (2003)Google Scholar
  19. 19.
    Kraus, S.: Strategic Negotiation in Multiagent Environments. MIT Press (October 2001)Google Scholar
  20. 20.
    Kraus, S., Wilkenfeld, J., Zlotkin, G.: Multiagent negotiation under time constraints. Artificial Intelligence 75(2), 297–345 (1995)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Lax, D.A., Sebenius, J.K.: Thinking coalitionally: party arithmetic, process opportunism, and strategic sequencing. In: Young, H.P. (ed.) Negotiation Analysis, pp. 153–193. The University of Michigan Press (1992)Google Scholar
  22. 22.
    Lin, R., Kraus, S., Tykhonov, D., Hindriks, K., Jonker, C.M.: Supporting the design of general automated negotiators. In: Proceedings of the Second International Workshop on Agent-Based Complex Automated Negotiations, ACAN 2009 (2009)Google Scholar
  23. 23.
    Lin, R., Kraus, S., Wilkenfeld, J., Barry, J.: Negotiating with bounded rational agents in environments with incomplete information using an automated agent. Artificial Intelligence 172(6-7), 823–851 (2008)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Lin, R., Oshrat, Y., Kraus, S.: Investigating the benefits of automated negotiations in enhancing people’s negotiation skills. In: AAMAS 2009: Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems, pp. 345–352 (2009)Google Scholar
  25. 25.
    Litan, C.M., Serban, L.D., Silaghi, G.C.: Agentfsega - time constrained reasoning model for bilateral multi-issue negotiations. In: Ito, T., et al. (eds.) New Trends in Agent-Based Complex Automated Negotiations. SCI, vol. 383, pp. 159–165. Springer, Heidelberg (2011)Google Scholar
  26. 26.
    McKelvey, R.D., Palfrey, T.R.: An experimental study of the centipede game. Econometrica 60(4), 803–836 (1992)MATHCrossRefGoogle Scholar
  27. 27.
    Niu, J., Cai, K., Parsons, S., McBurney, P., Gerding, E.: What the 2007 tac market design game tells us about effective auction mechanisms. Journal of Autonomous Agents and Multi-Agent Systems (2010)Google Scholar
  28. 28.
    Rubinstein, A., Osborne, M.J., Rubinstein, A.: Bargaining and Markets Economic Theory, Econometrics, and Mathematical Economics. Academic Press (April 1990)Google Scholar
  29. 29.
    Osborne, M.J., Rubinstein, A. (eds.): A Course in Game Theory. MIT Press (1994)Google Scholar
  30. 30.
    Raiffa, H.: The Art and Science of Negotiation. Harvard University Press (1982)Google Scholar
  31. 31.
    Raiffa, H., Richardson, J., Metcalfe, D.: Negotiation Analysis: The Science and Art of Collaborative Decision Making. Harvard University Press (2003)Google Scholar
  32. 32.
    Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica 50(1), 97–109 (1982)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Fujita, K., Kawaguchi, S., Ito, T.: Compromising strategy based on estimated maximum utility for automated negotiating agents. In: Ito, T., et al. (eds.) New Trends in Agent-Based Complex Automated Negotiations. SCI, vol. 383, pp. 137–144. Springer, Heidelberg (2011)Google Scholar
  34. 34.
    Stone, P., Greenwald, A.: The first international trading agent competition: Autonomous bidding agents. Electronic Commerce Research 5(2), 229–265 (2005)MATHCrossRefGoogle Scholar
  35. 35.
    van Galen Last, N.: Opponent model estimation in bilateral multi-issue negotiation. In: Ito, T., et al. (eds.) New Trends in Agent-Based Complex Automated Negotiations. SCI, vol. 383, pp. 167–174. Springer, Heidelberg (2011)Google Scholar
  36. 36.
    Wellman, M.P., Wurman, P.R., O’Malley, K., Bangera, R., de Lin, S., Reeves, D., Walsh, W.E.: Designing the market game for a trading agent competition. IEEE Internet Computing 5(2), 43–51 (2001)CrossRefGoogle Scholar
  37. 37.
    Zeng, D., Sycara, K.: Benefits of learning in negotiation (1997)Google Scholar
  38. 38.
    Zeng, D., Sycara, K.: Bayesian learning in negotiation. International Journal of Human Computer Systems 48, 125–141 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tim Baarslag
    • 1
  • Koen Hindriks
    • 1
  • Catholijn Jonker
    • 1
  • Sarit Kraus
    • 2
    • 3
  • Raz Lin
    • 2
  1. 1.Man Machine Interaction GroupDelft University of TechnologyDelftThe Netherlands
  2. 2.Computer Science DepartmentBar-Ilan UniversityTel AvivIsrael
  3. 3.Institute for Advanced Computer StudiesUniversity of MarylandBaltimoreUSA

Personalised recommendations