Soft Computing as a Tool, Six Years Later

Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 271)

Abstract

After a brief expression of my personal gratitude for the inspiring mentorship received from Professors Lotfi Zadeh and Abe Mamdani, I review some of the 70’s seminal papers that lead to Prof Mamdani’s innovation in fuzzy control (FC). Then, I discuss the concurrent development of FC and expert system applications, which took place in the 80’s, noting the similarity stemming from their common use of knowledge bases (KB) developed via rapid prototyping. FC and expert systems also shared a common difficulty: avoiding KB obsolescence over time which was caused by the dynamic environment in which they were deployed. For FC, the lack of automation in their design and maintenance process changed in the 90’s, when Soft Computing (SC) offered a broader computational paradigm for developing intelligent systems, by adding a search and learning component to the fuzzy logic reasoning component. These SC components allowed researchers to automate the fine-tuning of fuzzy systems. In a 2004 position paper, Prof. Mamdani and I made some initial remarks regarding the use and misuse of SC as a tool. In the last six years we have seen an evolution of SC, with a clearer role for their use in capturing knowledge to embed in object-level models, and meta-knowledge to guide the design and upkeep of these models. I illustrate this concept with three real-world examples in insurance risk management, fleet asset selection, and power plant management.

Keywords

Fuzzy Logic Fuzzy System Fuzzy Control Fuzzy Controller Soft Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mamdani, E.H., Bonissone, P.: Soft Computing as a Tool. In: Proc. 2004 IEEE Conference on Fuzzy Systems (FUZZ-IEEE 2004), Budapest, Hungary, p. 31 (2004)Google Scholar
  2. 2.
    Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transaction on Systems, Man, and Cybernetics, SMC-3,2 (1973)Google Scholar
  3. 3.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning - I. Information Sciences 8(3), 199–249 (1975)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning - II. Information Sciences 8(4), 301–357 (1975)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning - III. Information Sciences 9(1), 43–80 (1975)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. International J. of Man-Machine Studies 7(1), 1–13 (1975)CrossRefMATHGoogle Scholar
  7. 7.
    Kickert, W.J.M., Mamdani, E.H.: Analysis of a fuzzy logic controller. Fuzzy Sets and Systems 1, 29–44 (1976)CrossRefGoogle Scholar
  8. 8.
    Langari, G., Tomizuka, M.: Stability of fuzzy linguistic control systems. In: Proc. of the 29th Conference on Decision and Control, pp. 2185–2190 (1990)Google Scholar
  9. 9.
    Palm, R.: Sliding Mode Fuzzy Control. In: Proceedings of the IEEE Intemational Conference on Fuzzy Systems, pp. 519–526 (1992)Google Scholar
  10. 10.
    Slotine, J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1991)MATHGoogle Scholar
  11. 11.
    Procyk, T.J., Mamdani, E.H.: A linguistic Self-Organizing Process Control. Automatica 15(1), 15–30 (1979)CrossRefMATHGoogle Scholar
  12. 12.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. on Systems, Man, and Cybernetics, SMC 15, 116–132 (1985)MATHGoogle Scholar
  13. 13.
    Tobi, T., Hanafusa, T.: A practical application of fuzzy control for an air-conditioning system. International Journal of Approximate Reasoning 5, 331–348 (1991)CrossRefMATHGoogle Scholar
  14. 14.
    Katayama, R.: Neuro, Fuzzy and Chaos Technology and its Application to (Sanyo) Consumer Electronics. In: Japanese-European Symposium on Fuzzy Systems (1992)Google Scholar
  15. 15.
    Yasunobu, S., Miyamoto, S., Ihara, H.: Fuzzy Control for Automatic train Operation system. In: Proc. 4th IFAC/IFIP/IFORS Conference, pp. 33–39 (1983)Google Scholar
  16. 16.
    Oshima, H., Yasunobu, S., Sekino, S.-I.: Automatic train operation system based on predictive fuzzy control. In: Proceedings of the International Workshop on Artificial Intelligence for Industrial Applications (IEEE AI 1988), pp. 485–489 (1988); doi:10.1109/AIIA.1988.13336Google Scholar
  17. 17.
    Sakai, I., Iwaki, Y., Haga, T., Sakaguchi, S., Suzaki, Y.: Vehicle automatic transmission control system using fuzzy logic to determine slope and an inferred driver’s intention to decelerate to determinie the correct gear position. US Patent and Trademark Office, Patent No. 5389050 (February 14, 1995)Google Scholar
  18. 18.
    Hasegawa, Y., Iwaki, Y., Sakai, I.: System for controlling vehicle automatic transmission using fuzzy logic. US Patent and Trademark Office, Patent No. 5323318 (June 21, 1994)Google Scholar
  19. 19.
    Kasai, Y., Morimoto, Y.: Electronically Controlled Continuously Variable Transmission (ECTV-II). In: IEEE International Congress on Transportation Electronic: Convergence 1988, pp. 33–42 (1988); doi:10.1109/ICTE.1988.753454Google Scholar
  20. 20.
    Suzuki, Y., Yamada, S.-I., Fujikawa, H.: Anti-swing control of the container crane by fuzzy control. In: Proceedings of the International Conference on Industrial Electronics, Control, and Instrumentation (IECON 1993), pp. 230–235 (1993); doi:10.1109/IECON.1993.339076Google Scholar
  21. 21.
    Shortliffe, E.H.: A rule-based computer program for advising physicians regarding antimicrobial therapy selection. In: Proceedings of the ACM 1974, vol. 2 (1974)Google Scholar
  22. 22.
    Buchanan, B.G., Shortliffe, E.H. (eds.): Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project. Addison-Wesley, Reading (1984)Google Scholar
  23. 23.
    Duda, R.O., Gaschnig, J., Hart, P.E.: Model Design in the Prospector Consultant System for Mineral Exploration. In: Michie, D. (ed.) Expert Systems in the Micro-electronic Age, pp. 153–167 (1979)Google Scholar
  24. 24.
    Bonissone, P., Johnson, H.: Expert System for Diesel Electric Locomotive Repair. The Journal of FORTH Application and Research 1(1), 7–16 (1983); Auerbach Data Base Management in Human Systems Management, vol. 4, pp. 255–262 (1984) Google Scholar
  25. 25.
    Forgy: RETE: A fast algorithm for the many pattern/many object pattern matching problem. Artificial Intelligence 19(1), 17–37 (1982)CrossRefGoogle Scholar
  26. 26.
    Forgy: OPS5 User’s Manual. CMU, CS Dept. (1981)Google Scholar
  27. 27.
    Forgy, C., McDermott, J.: OPS, A Domain-Independent Production System Language. In: Proc. IJCAI 1977, pp. 933–939 (1977)Google Scholar
  28. 28.
    Bonissone, P., Decker, K.: Selecting Uncertainty Calculi and Granularity: An Experiment in Trading-off Precision and Complexity. In: Kanal, L., Lemmer, J. (eds.) Uncertainty in Artificial Intelligence, pp. 217–247. North-Holland Publishing Company (1986)Google Scholar
  29. 29.
    Bonissone, P., Gans, S., Decker, K.: RUM: A Layered Architecture for Reasoning with Uncertainty. In: Proc. 1987 International Joint Conference of Artificial Intelligence (IJCAI 1987), pp. 891–898. Morgan Kaufmann Publishers, Inc., Italy (1987)Google Scholar
  30. 30.
    Bonissone, P.: A Reasoning System for Reasoning with Uncertainty. US Patent and Trademark Office, Patent No. 4 860, 213 (1989)Google Scholar
  31. 31.
    Bonissone, P., Halverson, P.: Time-Constrained Reasoning Under Uncertainty. The Journal of Real Time Systems 2, 22–45 (1990)Google Scholar
  32. 32.
    Bonissone, P., Pfau, L.: A Real-Time System for Reasoning with Uncertainty. US Patent and Trademark Office, Patent No. 5 058, 33 (1991)Google Scholar
  33. 33.
    Bonissone, P.: Now that I Have a Good Theory of Uncertainty, What Else Do I Need? In: Proc. 1989 Conference of Uncertainty in AI, pp. 22–33, Windsor, Canada (1989)Google Scholar
  34. 34.
    Bonissone, P.: A Compiler for Fuzzy Logic Controllers. In: Proceedings of the International Fuzzy Engineering Symposium 1991 (IFES 1991), Yokohama, Japan, pp. 706–717 (1991)Google Scholar
  35. 35.
    Bonissone, P., Comly, J., Dausch, M.: Compilation of Rule Base for Fuzzy Logic Control. US Patent and Trademark Office, Patent No. 6 078, 911 (June 20, 2000)Google Scholar
  36. 36.
    Bonissone, P., Chiang, K.H.: Fuzzy Logic Controllers: A Knowledge Based System View. In: Proc. of the IFAC Workshop on Intelligent Manufacturing Systems, Dearborn, MI (1992)Google Scholar
  37. 37.
    Bonissone, P., Chiang, K.: Fuzzy Logic Controllers: From Development to Deployment. In: Proc. of the 1993 IEEE Conference on Neural Networks, San Francisco, CA (1993)Google Scholar
  38. 38.
    Bonissone, P.: Fuzzy Logic Controllers: An Industrial Reality. In: Zurada, J.M., Marks II, R.J., Robinson, C.J. (eds.) Computational Intelligence Imitating Life, pp. 316–327. IEEE Press (1994)Google Scholar
  39. 39.
    Bonissone, P., Chiang, K.: A Knowledge Based System View of Fuzzy Controllers. In: Yager, R., Zadeh, L. (eds.) Fuzzy Sets, Neural Networks and Soft Computing, Van Nostrand Reinhold, pp. 296–310 (1994)Google Scholar
  40. 40.
    Badami, V., Chiang, K.H., Houpt, P.K., Bonissone, P.: Fuzzy Logic Supervisory Control for Steam Turbine Pre-warming Automation. In: Proceedings of the Third IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 1994), Orlando, FL, pp. 1045–1050 (1994)Google Scholar
  41. 41.
    Marcelle, K., Chiang, K., Houpt, P.K., Bonissone, P.: A Hierarchical Controller for Optimal Load Cycling of Steam Turbines. In: Proc. 33rd Conference on Decision and Control (CDC 1994), Lake Buena Vista, FL, pp. 611–612 (1994)Google Scholar
  42. 42.
    Marcelle, K., Chiang, K., Houpt, P., Bonissone, P., Weiss, J.: Steam Turbine Fuzzy Logic Cyclic Control Method and Apparatus Thereof. US Patent and Trademark Office, Patent No. 5, vol. 517, p. 424 (May 14, 1996)Google Scholar
  43. 43.
    Bonissone, P., Chiang, K.: Fuzzy Logic Hierarchical Controller for A Recuperative Turboshaft Engine: from Mode Selection to Mode Melding. In: Yen, J., Langari, R., Zadeh, L. (eds.) Industrial Applications of Fuzzy Control and Intelligent Systems, IEEE Press (1995)Google Scholar
  44. 44.
    Bonissone, P., Chiang, K., Dausch, M., Comly, J.: Fuzzy Hierarchical Controller for a Turboshaft Engine. In: US Patent and Trademark Office, Patent No. 5, vol. 806, p. 52 (September 8, 1998)Google Scholar
  45. 45.
    Bonissone, P., Badami, V., Chiang, K.H., Khedkar, P.S., Marcelle, K.W., Schutten, M.J.: Industrial Applications of Fuzzy Logic at General Electric. Proceedings of the IEEE 83(3), 450–465 (1995); doi:10.1109/5.364490Google Scholar
  46. 46.
    Bonissone, P.: Discussion: Fuzzy Logic Control Technology: A Personal Perspective. Technometrics 37(3), 262–266 (1995)CrossRefGoogle Scholar
  47. 47.
    Bonissone, P., Khedkar, P., Schutten, M.: Fuzzy Logic Control of Resonant Converters for Power Supplies. In: Proceedings of the 1995 IEEE Conference on Systems, Control Applications (CCA 1995), Albany, NY (1995)Google Scholar
  48. 48.
    Bonissone, P., Schutten, M., Chiang, K.: 48 P. US Patent and Trademark Office, Patent No. 5 534, 766 (July 9, 1996)Google Scholar
  49. 49.
    Karr, C.L.: Design of an adaptive fuzzy logic controller using genetic algorithms. In: Proc. Int. Conf. on Genetic Algorithms (ICGA 1991), San Diego, CA, USA, pp. 450–456 (1991)Google Scholar
  50. 50.
    Karr, C.L.: Genetic algorithms for fuzzy controllers. AI Expert 6(2), 27–33 (1991)Google Scholar
  51. 51.
    Lee, M., Takagi, H.: Integrating design stages of fuzzy systems using genetic algorithms. In: Proc. 2nd IEEE Conf. on Fuzzy Systems, San Francisco, CA, USA, pp. 612–617 (1993)Google Scholar
  52. 52.
    Burkhardt, D., Bonissone, P.: Automated Fuzzy Knowledge Base Generation and Tuning. In: Proceedings of the 1992 IEEE International Conference on Fuzzy Systems (FUZZ-3IEEE 1992), San Diego, CA, pp. 179–188 (1992)Google Scholar
  53. 53.
    Bonissone, P.: Fuzzy Logic and Fuzzy Logic Controllers: An Introduction. In: Herrera, F., Verdegay, J.L. (eds.) Genetic Algorithms and Soft Computing, pp. 30–47. Physica-Verlag, Heidelberg (1996)Google Scholar
  54. 54.
    Bonissone, P., Khedkar, P., Chen, Y.-T.: Genetic Algorithms for Automated Tuning of Fuzzy Controllers: A Transportation Application. In: Proceedings of the 1996 IEEE Conference on Fuzzy Systems (FUZZ-IEEE 1996), New Orleans, Louisiana, pp. 674–680 (1996)Google Scholar
  55. 55.
    Bonissone, P., Chen, Y.-T., Khedkar, P.: System and Method for Tuning a Rail-based Transportation System Speed Controller. US Patent and Trademark Office, Patent No. 5 995, 737 (November 30, 1999)Google Scholar
  56. 56.
    Bonissone, P., Chen, Y.-T., Goebel, K., Khedkar, P.: Hybrid Soft Computing Systems: Industrial and Commercial Applications. Proceedings of the IEEE 87(9), 1641–1667 (1999); doi:10.1109/5.784245Google Scholar
  57. 57.
    Bonissone, P., Aggour, K.: Fuzzy Automated Braking System for Collision Prevention. In: Proc. FUZZ-IEEE 2001, Melbourne, Australia, vol. 3, pp. 757–760 (2001)Google Scholar
  58. 58.
    Goebel, K., Subbu, R., Bonissone, P.: Controller Adaptation to Compensate Deterioration Effects, GE Global Research Technical Report, 2006 GRC298 (2006)Google Scholar
  59. 59.
    Bonissone, P.: The life cycle of a fuzzy knowledge-based classifier. In: Proc. North American Fuzzy Information Processing Society (NAFIPS 2003), Chicago, IL, pp. 488–494 (2003)Google Scholar
  60. 60.
    Bonissone, P.: Soft Computing and Meta-heuristics: using knowledge and reasoning to control search and vice-versa. In: Proc. SPIE Applications and Science of Neural Networks, Fuzzy Systems and Evolutionary Computation V, S. Diego, CA, vol. 5200, pp. 133–149 (2003)Google Scholar
  61. 61.
    Bonissone, P.: Soft Computing: A Continuously Evolving Concept. Int. J. Computational Intelligence Systems 3(2), 237–248 (2011)CrossRefGoogle Scholar
  62. 62.
    Bonissone, P., Varma, A., Aggour, K.: An Evolutionary Process for Designing and Maintaining a Fuzzy Instance-based Model (FIM). In: Proc. First Workshop of Genetic Fuzzy Systems (GFS 2005), Granada, Spain (2005)Google Scholar
  63. 63.
    Bonissone, P.: Development and Maintenance of Fuzzy Models in Financial Applications. In: Lopez-Diaz, Gil, Grzegorzewski, Hyrniewicz, Lawry (eds.) Soft Methodology and Random Information Systems. Springer, Heidelberg (2004)Google Scholar
  64. 64.
    Patterson, A., Bonissone, P., Pavese, M.: Six Sigma Quality Applied Throughout the Lifecycle of and Automated Decision System. Journal of Quality and Reliability Engineering International 21(3), 275–292 (2005)CrossRefGoogle Scholar
  65. 65.
    Aggour, K., Bonissone, P., Cheetham, W., Messmer, R.: Automating the Underwriting of Insurance Applications. AI Magazine 27(3), 36–50 (2006)Google Scholar
  66. 66.
    Bonissone, P.: Automating the Quality Assurance of an on-line Knowledge-Based classifier by fusing multiple off-line classifiers. In: Bouchon-Meunier, Coletti, Yager (eds.) Modern Information Processing: From Theory to Applications, pp. 147–158. Elsevier (2005)Google Scholar
  67. 67.
    Bonissone, P., Subbu, R., Aggour, K.: Evolutionary Optimization of Fuzzy Decision Systems for Automated Insurance Underwriting. In: Proc. FUZZ-IEEE 2002, Honolulu, Hawaii, pp. 1003–1008 (2002)Google Scholar
  68. 68.
    Bonissone, P., Varma, A.: Predicting the Best Units within a Fleet: Prognostic Capabilities Enabled by Peer Learning, Fuzzy Similarity, and Evolutionary Design Process. In: Proc. FUZZ-IEEE 2005, Reno NV, USA, May 22-25 (2005)Google Scholar
  69. 69.
    Bonissone, P., Varma, A., Aggour, K., Xue, F.: Design of local fuzzy models using evolutionary algorithms. Computational Statistics and Data Analysis 51, 398–416 (2006)CrossRefMATHMathSciNetGoogle Scholar
  70. 70.
    Atkeson, C.G.: Memory-based approaches to approximating continuous functions. In: Casdagli, M., Eubank, S. (eds.) Nonlinear Modeling and Forecasting, pp. 503–521. Addison-Wesley, UK (1992)Google Scholar
  71. 71.
    Atkeson, C.G., Moore, A., Schaal, S.: Locally weighted learning. Artificial Intelligence. Reviews 11(1-5), 11–73 (1997)CrossRefGoogle Scholar
  72. 72.
    Xue, F., Subbu, R., Bonissone, P.: Locally Weighted Fusion of Multiple Predictive Models. In: IEEE International Joint Conference on Neural Networks (IJCNN 2006), Vancouver, BC, Canada, pp. 2137–2143 (2006)Google Scholar
  73. 73.
    Bonissone, P., Xue, F., Subbu, R.: Fast Meta-models for Local Fusion of Multiple Predictive Models. Applied Soft Computing Journal 11(2) (2011); doi:10.1016/j.asoc.2008.03.006Google Scholar
  74. 74.
    Subbu, R., Bonissone, P., Bollapragada, S., Chalermkraivuth, K., Eklund, N., Iyer, N., Shah, R., Xue, F., Yan, W.: A review of two industrial deployments of multi-criteria decision-making systems at General Electric. In: First IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM 2007), Honolulu, Hawaii (2007)Google Scholar
  75. 75.
    Subbu, R., Bonissone, P., Eklund, N., Yan, W., Iyer, N., Xue, F., Shah, R.: Management of Complex Dynamic Systems based on Model-Predictive Multi-objective Optimization. In: CIMSA 2006, La Coruña, Spain, pp. 64–69 (2006)Google Scholar
  76. 76.
    Bonissone, P., Hu, X., Subbu, R.: A Systematic PHM Approach for Anomaly Resolution: A Hybrid Neural Fuzzy System for Model Construction. In: Proc. PHM 2009, San Diego, CA (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.General Electric Global ResearchSchenectadyUSA

Personalised recommendations