Distributed Mining of Constrained Frequent Sets from Uncertain Data

  • Alfredo Cuzzocrea
  • Carson K. Leung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7016)

Abstract

With the advance in technology, sensor networks have been widely used in many application areas such as environmental surveillance. Sensors distributed in these networks serve as good sources for data. This calls for distributed data mining, which searches for implicit, previously unknown, and potentially useful patterns that might be embedded in the distributed data. Many existing distributed data mining algorithms do not allow users to express the patterns to be mined according to their intention via the use of constraints. Consequently, these unconstrained mining algorithms can yield numerous patterns that are not interesting to users. Moreover, due to inherited measurement inaccuracies and/or network latencies, the data are often riddled with uncertainty. These call for constrained mining and uncertain data mining. In this paper, we propose a tree-based system for mining frequent sets that satisfy user-defined constraints from a distributed environment such as a wireless sensor network of uncertain data. Experimental results show effectiveness of our proposed system.

Keywords

Wireless Sensor Network Association Rule Uncertain Data Frequent Item Frequent Itemset Mining 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, C.C., et al.: Frequent pattern mining with uncertain data. In: Proc. KDD 2009, pp. 29–37 (2009)Google Scholar
  2. 2.
    Agrawal, R., Shafer, J.: Parallel mining of association rules. IEEE TKDE 8(6), 962–969 (1996)Google Scholar
  3. 3.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. VLDB 1994, pp. 487–499 (1994)Google Scholar
  4. 4.
    Agrawal, R., et al.: Mining association rules between sets of items in large databases. In: Proc. ACM SIGMOD 1993, pp. 207–216 (1993)Google Scholar
  5. 5.
    Bernecker, T., et al.: Probabilistic frequent itemset mining in uncertain databases. In: Proc. KDD 2009, pp. 119–127 (2009)Google Scholar
  6. 6.
    Cheung, D.W., et al.: A fast distributed algorithm for mining association rules. In: Proc. PDIS 1996, pp. 31–42 (1996)Google Scholar
  7. 7.
    Chui, C.-K., et al.: Mining frequent itemsets from uncertain data. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 47–58. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Coenen, F., et al.: T-trees, vertical partitioning and distributed association rule mining. In: Proc. IEEE ICDM 2003, pp. 513–516 (2003)Google Scholar
  9. 9.
    Dai, X., Yiu, M.L., Mamoulis, N., Tao, Y., Vaitis, M.: Probabilistic spatial queries on existentially uncertain data. In: Medeiros, C.B., Egenhofer, M.J., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 400–417. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    El-Hajj, M., Zaïane, O.R.: Parallel leap: large-scale maximal pattern mining in a distributed environment. In: Proc. ICPADS 2006, pp. 135–142 (2006)Google Scholar
  11. 11.
    Grahne, G., et al.: Efficient mining of constrained correlated sets. In: Proc. IEEE ICDE 2000, pp. 512–521 (2000)Google Scholar
  12. 12.
    Han, J., et al.: Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Mining and Knowledge Discovery 8(1), 53–87 (2004)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lakshmanan, L.V.S., Leung, C.K.-S., Ng, R.: Efficient dynamic mining of constrained frequent sets. ACM TODS 28(4), 337–389 (2003)CrossRefGoogle Scholar
  14. 14.
    Leung, C.K.-S.: Frequent itemset mining with constraints. In: Encyclopedia of Database Systems, pp. 1179–1183 (2009)Google Scholar
  15. 15.
    Leung, C.K.-S., Brajczuk, D.A.: Efficient algorithms for the mining of constrained frequent patterns from uncertain data. ACM SIGKDD Explorations 11(2), 123–130 (2009)CrossRefGoogle Scholar
  16. 16.
    Leung, C.K.-S., Hao, B.: Mining of frequent itemsets from streams of uncertain data. In: Proc. IEEE ICDE 2009, pp. 1663–1670 (2009)Google Scholar
  17. 17.
    Leung, C.K.-S., et al.: A tree-based approach for frequent pattern mining from uncertain data. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 653–661. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Leung, C.K.-S., et al.: Mining uncertain data for frequent itemsets that satisfy aggregate constraints. In: Proc. ACM SAC 2010, pp. 1034–1038 (2010)Google Scholar
  19. 19.
    Ng, R.T., et al.: Exploratory mining and pruning optimizations of constrained associations rules. In: Proc. ACM SIGMOD 1998, pp. 13–24 (1998)Google Scholar
  20. 20.
    Pei, J., et al.: Pushing convertible constraints in frequent itemset mining. Data Mining and Knowledge Discovery 8(3), 227–252 (2004)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Schuster, A., et al.: A high-performance distributed algorithm for mining association rules. KAIS 7(4), 458–475 (2005)Google Scholar
  22. 22.
    Zaki, M.J.: Parallel and distributed association mining: a survey. IEEE Concurrency 7(4), 14–25 (1999)CrossRefGoogle Scholar
  23. 23.
    Zhang, Q., et al.: Finding frequent items in probabilistic data. In: Proc. ACM SIGMOD 2008, pp. 819–832 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alfredo Cuzzocrea
    • 1
  • Carson K. Leung
    • 2
  1. 1.ICAR-CNR and University of CalabriaItaly
  2. 2.Department of Computer ScienceUniversity of ManitobaCanada

Personalised recommendations