Advertisement

Parallel Implementations of Gusfield’s Cut Tree Algorithm

  • Jaime Cohen
  • Luiz A. Rodrigues
  • Fabiano Silva
  • Renato Carmo
  • André L. P. Guedes
  • Elias P. DuarteJr.
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7016)

Abstract

This paper presents parallel versions of Gusfield’s cut tree algorithm. Cut trees are a compact representation of the edge-connectivity between every pair of vertices of an undirected graph. Cut trees have many applications in combinatorial optimization and in the analysis of networks originated in many applied fields. However, surprisingly few works have been published on the practical performance of cut tree algorithms. This paper describes two parallel versions of Gusfield’s cut tree algorithm and presents extensive experimental results which show a significant speedup on most real and synthetic graphs in our dataset.

Keywords

Graph edge-connectivity Cut tree algorithms MPI OpenMP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore art thou r3579x?: anonymized social networks, hidden patterns, and structural steganography. In: Proceedings of the 16th int’l conference on World Wide Web. WWW 2007. ACM, NY (2007)Google Scholar
  3. 3.
    Bader, D.A., Sachdeva, V.: A cache-aware parallel implementation of the push-relabel network flow algorithm and experimental evaluation of the gap relabeling heuristic. In: ISCA PDCS (2005)Google Scholar
  4. 4.
    Batagelj, V., Mrvar, A.: Pajek datasets (2006), http://vlado.fmf.uni-lj.si/pub/networks/data/
  5. 5.
    Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Chapman, B., Jost, G., Van der Pas, R.: Using OpenMP: portable shared memory parallel programming. MIT Press, Cambridge (2008)Google Scholar
  7. 7.
    Chekuri, C.S., Goldberg, A.V., Karger, D.R., Levine, M.S., Stein, C.: Experimental study of minimum cut algorithms. In: SODA ’97: Proceedings of the eighth annual ACM-SIAM symposium on Discrete algorithms. pp. 324–333. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (1997)Google Scholar
  8. 8.
    Cherkassky, B.V., Goldberg, A.V.: On Implementing the Push-Relabel Method for the Maximum Flow Problem. Algorithmica 19(4), 390–410 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Flake, G.W., Tarjan, R.E., Tsioutsiouliklis, K.: Graph clustering and minimum cut trees. Internet Mathematics 1(4) (2003)Google Scholar
  10. 10.
    Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. J. ACM 45, 783–797 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J. ACM 35, 921–940 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Goldberg, A.V., Tsioutsiouliklis, K.: Cut tree algorithms. In: SODA 1999: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, USA (1999)Google Scholar
  13. 13.
    Gomory, R.E., Hu, T.C.: Multi-terminal network flows. Journal of the Society for Industrial and Applied Mathematics 9(4), 551–570 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Görke, R., Hartmann, T., Wagner, D.: Dynamic Graph Clustering Using Minimum-Cut Trees. In: Dehne, F., Gavrilova, M., Sack, J.R., Tóth, C. (eds.) WADS 2009. LNCS, vol. 5664, pp. 339–350. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Gusfield, D.: Very simple methods for all pairs network flow analysis. SIAM J. Comput. 19, 143–155 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hong, B., He, Z.: An asynchronous multi-threaded algorithm for the maximum network flow problem with non-blocking global relabeling heuristic. IEEE Transactions on Parallel and Distributed Systems 99 (2010)Google Scholar
  17. 17.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and shrinking diameters. In: ACM Trans. on Knowledge Discovery from Data, ACM TKDD (2007)Google Scholar
  18. 18.
    Letchford, A., Reinelt, G., Theis, D.: Odd minimum cut-sets and b-matchings revisited. SIAM Journal on Discrete Mathematics 22(4) (2008)Google Scholar
  19. 19.
    Mitrofanova, A., Farach-Colton, M., Mishra, B.: Efficient and robust prediction algorithms for protein complexes using gomory-hu trees. In: Altman, R.B., Dunker, A.K., Hunter, L., Murray, T., Klein, T.E. (eds.) Pacific Symposium on Biocomputing, pp. 215–226 (2009)Google Scholar
  20. 20.
    Nagamochi, H., Ibaraki, T.: Algorithmic Aspects of Graph Connectivity. Cambridge University Press, New York (2008)CrossRefzbMATHGoogle Scholar
  21. 21.
    Rao, G., Stone, H., Hu, T.: Assignment of tasks in a distributed processor system with limited memory. IEEE Transactions on Computers 28, 291–299 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Saran, H., Vazirani, V.V.: Finding k cuts within twice the optimal. SIAM J. Comput. 24(1), 101–108 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Tuncbag, N., Salman, F.S., Keskin, O., Gursoy, A.: Analysis and network representation of hotspots in protein interfaces using minimum cut trees. Proteins: Structure, Function, and Bioinformatics 78(10), 2283–2294 (2010)CrossRefGoogle Scholar
  24. 24.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jaime Cohen
    • 1
    • 2
  • Luiz A. Rodrigues
    • 1
    • 3
  • Fabiano Silva
    • 1
  • Renato Carmo
    • 1
  • André L. P. Guedes
    • 1
  • Elias P. DuarteJr.
    • 1
  1. 1.Department of InformaticsFederal University of ParanáCuritibaBrazil
  2. 2.Department of InformaticsParaná State UniversityPonta GrossaBrazil
  3. 3.Department of Computer ScienceWestern Paraná State UniversityCascavelBrazil

Personalised recommendations