Collisions and Fractures: A Predictive Theory

  • Elena Bonetti
  • Michel Frémond
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 61)

Abstract

Collisions and fractures in solids are investigated at the macroscopic level. The theory is discussed, explaining its main mechanical and analytical features by addressing a 1-D problem. The collisions are assumed instantaneous. Percussions are introduced at the unknown fracture points. Equations of motion and constitutive laws give a set of differential equations, whose corresponding variational problem is proved to admit solution in SBV (special functions of bounded variation). A coherent weak formulation of mechanical conditions for impenetrability is also provided.

Keywords

Bounded Variation Virtual Work Variational Framework Predictive Theory Free Discontinuity Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonetti, E., Frémond, M.: Collisions and fractures: A model in SBD. Rend. Mat. Acc. Lincei 9(15), 47–57 (2004)Google Scholar
  2. 2.
    Frémond, M.: Collisions and damage. Tendencias em Matematica Aplicada e Computational, Sao Carlos-SP, Brazil. SBMAC, vol. 3(1) (2002), ISBN: 85-86883-06-9Google Scholar
  3. 3.
    Frémond, M.: Non-smooth thermomechanics. Springer, Berlin (2001)Google Scholar
  4. 4.
    Moreau, J.J.: Sur les lois de frottement, de viscosité et de plasticité. C. R. Acad. Sci. Mechanique 271, 608–611 (1970) (in French)Google Scholar
  5. 5.
    Moreau, J.J.: Fonctionnelles convexes. Séminaire J. Leray. Sur les équations aux dérivées partielles 2, 1–108 (1966)Google Scholar
  6. 6.
    Ambrosio, L., Fusco, N., Pallara, D.: Special functions of bounded variations and free discontinuity problems. Oxford University Press, Oxford (2000)Google Scholar
  7. 7.
    Attouch, H., Buttazzo, G., Michaille, G.: Variational analysis in Sobolev and BV spaces. In: Application to PDEs and Optimization. MPS-SIAM Series on Optimization (2006)Google Scholar
  8. 8.
    Moreau, J.J.: Bounded variation in time. In: Moreau, J.J., Panagiotopoulos, P.D., Strang, G. (eds.) Topics in Non-Smooth Mechanics, pp. 1–71. Birkhauser, Basel (1988)Google Scholar
  9. 9.
    Bonetti, E., Frémond, M.: Collisions and fractures. Vietnam J. Math. 32, 167–186 (2004)MathSciNetMATHGoogle Scholar
  10. 10.
    Bonetti, E., Frémond, M.: Collisions and fractures: A 1-D theory. How to tear off a chandelier from the ceiling. J. Elasticity 74(1), 47–66 (2004)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Braides, A.: Approximation of free-discontinuity problems. Springer, Berlin (1998)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Elena Bonetti
    • 1
  • Michel Frémond
    • 2
  1. 1.Department of MathematicsUniversity of PaviaPaviaItaly
  2. 2.Department of Civil EngineeringUniversity of Rome ” Tor Vergata”RomeItaly

Personalised recommendations