An Event-Driven Algorithm in Dynamics of Multi-contact Systems

  • Cédric Le Saux
  • Franck Cevaer
  • René Motro
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 61)

Abstract

This study is in keeping with the general pattern of dynamical simulation of a set of rigid three dimensional bodies submitted to unilateral contact constraints with dry friction. An event-driven algorithm, developed so as to be applied to the folding/unfolding of tensegrity systems, is presented in this paper. Computational results related to the folding process of a tensegrity structure are exposed and commented; these results point out the ability of the numerical model to handle dynamics of multi-contact systems.

Keywords

Folding Process Contact Constraint Tensegrity Structure Frictional Contact Problem Generalise Newton Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Motro, R., Podio-Guidugli, P.: Tensegrité - analyse et projets. Rev. Fr. Génie Civil 7(3), 251–266 (2003) (in French)CrossRefGoogle Scholar
  2. 2.
    Moreau, J.J.: Modélisation et simulation de matériaux granulaires. In: Mohammadi, B. (ed.) Actes du 35e Congrès National d’Analyse Numérique (2003) (in French)Google Scholar
  3. 3.
    Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical solution of initial-value problems in differential-algebraic equations. North-Holland, Amsterdam (1989)MATHGoogle Scholar
  4. 4.
    Hairer, E., Wanner, G.: Solving ordinary differential equations II, stiff and differential-algebraic problems, 2nd edn. Springer Series in Comp. Math. Springer, Berlin (1996)MATHGoogle Scholar
  5. 5.
    Haug, E.J.: Computer-aided kinematics and dynamics of mechanical systems, basic methods, vol. I. Allyn and Bacon, Boston (1989)Google Scholar
  6. 6.
    Le Saux, C.: Modélisation numérique du pliage et du déploiement de systèmes spatiaux avec prise en compte des contacts et des frottements-Cas des systèmes de tenségrité. PhD Thesis, Laboratoire de Mécanique et Génie Civil, Université Montpellier 2, Montpellier (2002) (in French)Google Scholar
  7. 7.
    Delassus, E.: Mémoire sur la théorie des liaisons finies unilatérales. Ann. Sci. Ec. Norm. Sup. 34, 95–179 (1917) (in French)MathSciNetGoogle Scholar
  8. 8.
    Génot, F., Brogliato, B.: New results on Painlevé paradoxe. Eur. J. Mech. A-Solid 18(4), 653–677 (1999)MATHCrossRefGoogle Scholar
  9. 9.
    Alart, P., Curnier, A.: A mixed formulation for frictional contact problems prone to Newton like methods. Comp. Meth. Appl. Mech. Eng. 92, 353–375 (1991)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Jourdan, F., Alart, P., Jean, M.: A Gauss-Seidel-like algorithm to solve frictional contact problems. Comp. Meth. Appl. Mech. Eng. 155, 31–47 (1998)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Brogliato, B.: Nonsmooth Mechanics, Models, Dynamics and Control, 2nd edn. Springer, Berlin (1999)MATHGoogle Scholar
  12. 12.
    Le Saux, C., Cevaer, F., Motro, R.: Contribution to 3D impact problem: Collisions between two slender steel bars. C. R. Mechanique 332(1), 17–22 (2004)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Cédric Le Saux
    • 1
  • Franck Cevaer
    • 1
  • René Motro
    • 1
  1. 1.Laboratoire de Mécanique et Génie Civil, CC 048Université Montpellier 2Montpellier Cedex 5France

Personalised recommendations